Alternate TextTo enhance service speed and avoid tariff delays, we've opened a US warehouse. All US orders ship directly from our US facility.
Home > RNA Delivery > Cationic/Ionizable Lipids

Cationic/Ionizable Lipids

In the past five years, DC Chemicals has focused on research and development in the RNA delivery field, successfully developing over 500 cationic lipid structures and maintaining an inventory of over 200 cationic lipids. We collaborate with leading gene delivery companies and research institutions worldwide, and our products and services have received widespread acclaim.
DC Chemicals has accumulated substantial experience in the synthesis of lipids, particularly for highly complex lipid molecules. Our unique chemical synthesis and purification processes often circumvent patented and literature-reported routes, allowing us to design new synthetic routes that yield lipid molecules with higher purity than those reported in literature and patents. Our representative molecules, such as LP-01, SM-102, ALC-0315, and DLIN-MC3-DMA, have purities exceeding 98% as tested by CAD-HPLC, placing them among the top purity products available.We have the capability to scale production from grams to kilograms.


Cationic ionizable lipids play a major role in the LNP formulation and its ability to transfect target cells with its cargo. The ionizable lipids are used to complex negatively charged nucleic acid cargo. The mRNA-cationic lipid complex fuses with the cell membrane and is then delivered into the cytosol. To be able to play these roles efficiently, a cationic ionizable lipid must be engineered with a suitable apparent acid dissociation constant (pKa). The apparent pKa of a cationic ionizable lipid is the likely pKa at the LNP surface. Currently, the cationic ionizable lipids in FDA-approved therapeutics all have an apparent pKa between 6-7. This is crucial for the cationic ionizable lipid to maintain a neutral charge while in systemic circulation (pH above the pKa of the lipid, pH ~7.5), as well as its ability to become positively charged in the endosome (pH ~6.5) and facilitate membrane fusion and subsequent cytosolic release.
You can also try the following methods, and our professionals will serve you Customized Consultation
Cat. No. Product Name Field of Application Chemical Structure
DC67557 Tidal Lipid 40
Tidal Lipid 40is an ionizable cationic lipid engineered to deliver RNA with high precision to immune cells like macrophages. Based on ​​Tidal Therapeutics' patent US 20250205169A1​​, ​​ Its pH-responsive design shifts from a ​​+8 mV charge at pH 5.5​​ (enabling endosomal escape) to ​​near-neutral at pH 7.4​​ (reducing off -target binding), ensuring efficient intracellular release while maintaining blood stability. In lipid nanoparticles, Lipid 40 achieves ​​65% transfection efficiency in human macrophages​​—surpassing benchmarks like ALC-0315—and protects >95% of RNA payloads from degradation. Critically, it maintains particle integrity after freeze-thaw cycles with minimal size drift (<5 nm) and excels in in vivo targeting, driving potent gene expression in tumor-associated macrophages while avoiding liver/spleen accumulation. This combination of ​​precision delivery, stability, and low toxicity​​ makes it ideal for immunotherapies, such as reprogramming M2 macrophages to anti-tumor M1 states.
More description
DC67570 Generation Lipid 87 Featured
Lipid-87​​ is an ionizable lipid developed by Generation Bio, characterized by its ​​tertiary amine group​​ for pH-dependent protonation and ​​dual C16/C17 aliphatic chains​​ that enhance hydrophobic stability.As the core component (47.5–57.5 mol%) of stealth lipid nanoparticles (LNPs), Lipid87 enables extended blood circulation (>24-hour half-life vs. 30 min for conventional LNPs) by synergizing with steric-stabilizing polymers (e.g., DSG-PEG₂₀₀₀-OMe), achieves >95% encapsulation efficiency for mRNA/ceDNA with low cytotoxicity (IC₅₀ >100 μM), and drives liver-specific targeting (>80% hepatocyte transfection at 0.5 mpk), effectively restoring 40% FIX activity in hemophilia B models for over 7 days.
More description
DC67566 CureVac Lipid C24(CVL1,VitE-C4DE-Pip- S)
CVL1 (C24)​​ is an ionizable lipid developed by CureVac for mRNA delivery, featuring a vitamin E (α-tocopherol) core linked via a thioether bridge to piperidine-based cationic headgroups. Its unique design enables pH-dependent charge switching (neutral at physiological pH, cationic in endosomes) for efficient mRNA encapsulation and endosomal escape. Formulated in lipid nanoparticles (LNPs) with DPhyPS and PMOZ4, CVL1 preferentially targets spleen and lymph node dendritic cells (DCs), enhancing antigen presentation and T-cell immunity. Key advantages include high mRNA encapsulation (>90%), stability under lyophilization, and reduced liver accumulation compared to PEGylated LNPs. In preclinical studies, CVL1-based LNPs induced robust CD8+/CD4+ T-cell responses and IgG2a-dominant antibody titers against tumor antigens (e.g., Trp2). With a particle size of 70–120 nm and low polydispersity (PDI <0.2), CVL1 balances delivery efficiency and biocompatibility, making it ideal for cancer and infectious disease vaccines requiring strong cellular immunity. Its degradable ester and thioether bonds further improve safety profiles.
More description
DC49237 DODAP hydrochloride
DODAP (hydrochloride) is an ionizable lipid. DODAP (hydrochloride) has the potential for the research of gene delivery.
More description
DC60671 THP1
THP1 is a tetrahydropyrimidine ionizable lipid for mRNA delivery. THP1 demonstrates higher transfection efficiency comparable to DLin-MC3-DMA (MC3). THP1 LNPs also demonstrates the ability to edit genes in specific liver tissues in a tdTomato transgenic mouse model.
More description
DC60619 12T-O14
12T-O14 is a amidine-incorporated degradable (AID) lipid for versatile mRNA delivery. 12T-O14-LNPs mediate efficient intramuscular delivery of mRNA vaccines and systemic delivery of mRNA therapeutics without noticeable toxicity. 12T-O14 serves as a superior supplementary lipid to redirect liver-tropic LNPs to selectively target the lung or spleen via simple adjustment of the formulation.
More description
DC89031 SM-102 IMPURITY 2
SM-102 N-oxide is potential impurity in commercial preparations of SM-102.
More description
DC65619 Lipid 11-A-M Featured
LNP Lipid-8 (11-A-M) is an ionizable lipid, which can be used for lipid nanoparticles (LNP) to deliver siRNA to T cells without targeting to ligands. LNP LIPs-8 loaded with GFP siRNA (siGFP), and significantly causes GFP gene silencing in mice model.
More description
DC67118 PNI 132 Featured
PNI 132, an ionizable lipid derived from the patent WO2020252589A developed by Precision Nanosystem, is useful in the formulation of lipid nanoparticles.
More description
DC60352 DDAB
DC33635 DODAP Featured
DODAP, also known as 1,2-Dioleoyl-3-dimethylammonium-propane, is a cationic lipid. It has been used as a component in liposomes that can be used to encapsulate siRNA, immunostimulatory oligodeoxynucleotides, antisense oligonucleotides, or chemotherapeutic agents for in vitro and in vivo delivery.
More description
DC33636 DOTAP Featured
DOTAP, also known as 1,2-Dioleoyl-3-trimethylammoniumpropane, is a cationic liposome-forming compound used for transfection of DNA, RNA, and other negatively charged molecules into eukaryotic cells. It has been used in gene delivery vectors for gene ther
More description
DC65362 BP Lipid 114 Featured
BP Lipid 114 is a well-designed ionizable lipid optimized for mRNA encapsulation and delivery. Its ethanolamine headgroup, ester bonds at the C6 and C8 positions, and 9-carbon tail contribute to efficient mRNA complexation, stability during delivery, and improved biodegradability. These properties make it a valuable component in LNPs for gene therapy and other mRNA-based therapeutic applications.
More description
DC65390 BP Lipid 135 Featured
BP Lipid 135 is a well-designed ionizable lipid optimized for mRNA encapsulation and delivery. Its propanolamine headgroup, ester bonds at the C8 position, and 9-carbon tail contribute to efficient mRNA complexation, stability during delivery, and improved biodegradability. These properties make it a valuable component in LNPs for gene therapy and other mRNA-based therapeutic applications.
More description
DC82301 IC-8 Featured
IC8 is an ionizable cationic lipid. It has been used in combination with other lipids for the formation of lipid nanoparticles (LNPs). Immunization with severe acute respiratory coronavirus 2 (SARS-CoV-2) spike glycoprotein mRNA in IC8- and manganese-containing LNPs induces IgG responses to SARS-CoV-2 Delta and Omicron variants in mice.1 Administration of mRNA encoding B7-H3 X CD3 bispecific T cell engaging (BiTE) antibodies in IC8-containing LNPs reduces tumor growth in MV4-11 and A375 mouse xenograft models.
More description
DC80070 A2-Iso5-2DC18 Featured
A2-Iso5-2DC18 is a top-performing lipid for mRNA delivery in bone marrow-derived dendritic cells (BMDCs), BMDMs and HeLa cells.
More description
DC86120 LIPID 10 Featured
Lipid 10 is a novel ionizable cationic lipid be used for delivery of therapeutic RNA to the Bone Marrow in Multiple Myeloma Using CD38-Targeted with Lipid 10-LNP.
More description
DC60215 Moderna Lipid 29 Featured
Lipid 29 is an ionizable amino lipid (pKa = 6.91) from Moderna platform that has been used in combination with other lipids in the formation of lipid nanoparticles (LNPs).Administration of human erythropoietin (EPO) mRNA in lipid 29-containing LNPs increases serum EPO levels in mice.
More description
DC49908 OF-02 Featured
OF-02 (OF-2) is an alkenyl amino alcohol (AAA) ionizable lipid for highly potent in vivo mRNA delivery.Alkenyl amino alcohols (AAA) are a functional group found in sphingosine and other bioactive molecules. It was used to prepare AAA-based ionizable lipids through ring-opening reactions between alkenyl epoxides (AEs) and polyamine cores. These AAA-based iLNPs could promote high-level protein expression Therefore, AAA-based ionizable lipids OF-00, OF-01, OF-02, and OF-03 were prepared. The results of in vivo delivery of human erythropoietin (hEPO) mRNA showed that the AAA ionizable lipid OF-02 with the linoleic acid derivative could effectively deliver hEPO mRNA. Compared with the positive control CKK-E12, OF-02 showed an increased ability to induce serum EPO protein expression by nearly twofold (Figure 7b). Likewise, it outperformed two benchmark ionizable lipids (503013 and C12-200) in the nucleic acid delivery field. Furthermore, the mRNA delivered by OF-02 iLNPs was mainly in vivo.translated into the liver. The liver-targeting ability of OF-02 iLNPs improves their delivery efficiency. Therefore, the OF-02 iLNPs may become excellent delivery vehicles for the treatment of liver diseases without other side effects of damage to other organs during the treatment
More description
DC60475 CL4F8-6 Featured
CL4F8-6 is an ionizable cationic lipid (pKa = 6.14) that has been used in combination with other lipids in the formation of lipid nanoparticles (LNPs).1 LNPs containing CL4F8-6 and encapsulating an mRNA reporter accumulate specifically in the mouse liver after intravenous administration. LNPs containing CL4F8-6 and encapsulating mRNA encoding the Cas9 nuclease (mCas9) and single-guide RNA (sgRNA) targeting Ttr (sgTtr), the gene encoding transthyretin, have been used to induce CRISPR-mediated gene knockdown in mice resulting in a reduction of serum levels of TTR.
More description
DC65328 AA-T3A-C12 Featured
AA-T3A-C12 is a leading anisamide-tethered lipidoid (AA-lipidoid) identified through a combinatorial library screening for targeted RNA delivery to activated fibroblasts, offering a promising approach to treat liver fibrosis.AA-T3A-C12 is a leading anisamide-tethered lipidoid (AA-lipidoid) identified through a combinatorial library screening for targeted RNA delivery to activated fibroblasts, offering a promising approach to treat liver fibrosis. It is synthesized via a one-pot, two-step modular method that combines anisamide—a ligand for sigma receptors overexpressed on activated hepatic stellate cells (HSCs)—with a T3A polyamine core and C12 epoxide tails, enabling efficient siRNA encapsulation in lipid nanoparticles (LNPs). In vitro, AA-T3A-C12 LNPs exhibit enhanced cellular uptake and gene silencing in activated fibroblasts, dependent on sigma receptor binding, as confirmed by haloperidol blockade studies, and outperform non-targeted analogs and the FDA-approved MC3 LNPs in fibroblast selectivity.In a mouse model of CCl4-induced liver fibrosis, AA-T3A-C12/siHSP47 LNP achieves approximately 65% knockdown of heat shock protein 47 (HSP47), a key fibrotic target, leading to significant reduction in collagen deposition and fibrosis alleviation, with a good safety profile and no exacerbation of liver injury.
More description
DC49932 FTT5 Featured
FTT5 is a lipid-like compound for efficient delivery of long mRNAs in vivo.
More description
DC70008 CLinDMA
CLinDMA, a cationic lipid known to potentially trigger inflammatory responses, is utilized in the synthesis of LNP201. This liposome-based assembly is specifically designed for the systemic delivery of siRNA.
More description
DC49883 L343
L-343 is an ionizable cationic lipidoid and can be used to synthetic liposomes for systemic delivery of RNAi therapeutics, Pka: 6.34.L343, with its sterically hindered tert-butyl esters, exhibited slower elimination from plasma and higher and more persistent levels in liver compared with L319.
More description
DC71044 Fluorescent DOTAP
Fluorescent DOTAP, a cationic lipid, can be used for the research of nucleic acid and protein delivery.
More description
DC80069 OF-DEG-LIN
OF-Deg-Lin is a biodegradable lipid containing an ester group, developed from the nonbiodegradable, linoleic acid derived OF-02; mRNA-LNPs containing OF-Deg-Lin showed high expression in the spleen. The ionizable lipid Of-Deg-Lin was synthesized, which possessed the similar chemical structure with OF-02.Both Of-Deg-Lin and OF-02 had diketopiperazine core and doubly unsaturated tails, and the difference between them was that Of-02 contained nondegradable 1,2-amino-alcohol linkages, whereas Of-Deg-Lin contained degradable ester linkages The change of linker altered iLNPs distribution and mRNA expression in vivo. Although the Of-Deg-Lin iLNPs could accumulate in the liver and spleen, they induced the expression of most functional proteins in B lymphocytes of spleen (over 85% of the total protein), not in the liver. Of-Deg-Lin iLNPs can deliver mRNA and express functional proteins in the spleen specifically, but the mechanism is unclear.
More description
DC80068 LIPID PL1
PL1 is a novel biomimetic phospholipid. PL1 nanoparticle delivery of costimulatory receptor CD137 mRNA improved the immunotherapy with an anti-CD137 Ab to some extent in both tumor models with better results obtained in the B16F10 melanoma model as compared to the A20 lymphoma model.
More description
DC60362 DLenDMA
DlenDMA is a lipid for RNA and vaccine delivery. DLenDMA showed better siRNA transfection efficiency than DODMA.
More description
DC60421 DC-6-14
DC-6-14 is a cationic lipid that can be used for drug delivery, gene transfection and vaccine delivery. DC-6-14 may be used for research into in vitro and in vivo nucleic acid and protein delivery. Reagent grade, for research use only.
More description
DC65333 A2-Iso5-4DC19
A2-Iso5-4DC19 is a lipidoid compound. A2-Iso5-4DC19 is an effective carrier for the delivery of an agent such as a polynucleotide to a cell.
More description

Customized Consultation X

Your information is safe with us. * Required Fields.

Your name
Company
Email
Procuct Name
Cat. No.
Remark
Verification code
Please fill out the characters in the picture
X