GW 6471

  Cat. No.:  DC39205   Featured
Chemical Structure
880635-03-0
For research use only. We do not sell to patients.
We match the best price and quality on market.
Email:order@dcchemicals.com  sales@dcchemicals.com
Tel:+86-021-58447131
We are official vendor of:
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 9
  • 8
  • 13
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
More than 5000 active chemicals with high quality for research!
Field of application
GW 6471 is a potent PPARα antagonist.
Cas No.: 880635-03-0
Synonyms: GW 6471 ;GW-6471 ;GW6471
SMILES: CCC(NC[C@@H](N/C(C)=C\C(C1=CC=C(C(F)(F)F)C=C1)=O)CC2=CC=C(OCCC3=C(C)OC(C4=CC=CC=C4)=N3)C=C2)=O
Formula: C35H36F3N3O4
M.Wt: 619.67
Purity: >98%
Sotrage: 2 years -20°C Powder, 2 weeks 4°C in DMSO, 6 months -80°C in DMSO
Publication: [1]. Xu HE, et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature. 2002 Feb 14;415(6873):813-7. [2]. Abu Aboud O, et al. Inhibition of PPARα induces cell cycle arrest and apoptosis, and synergizes with glycolysisinhibition in kidney cancer cells. PLoS One. 2013 Aug 7;8(8):e71115. [3]. Abu Aboud O, et al. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth. Am J Physiol Cell Physiol. 2015 Jun 1;308(11):C890-8.
Description: GW 6471 is a potent PPARα antagonist.
Target: PPARα
In Vivo: To test the antitumor activity of PPARα antagonism in vivo, a subcutaneous xenograft mouse model is used. Caki-1 cells are implanted subcutaneously in nude (Nu/Nu) mice. After tumor masses reach ∼5 mm in diameter, GW 6471 is administrated intraperitoneally every other day for 4 wk at a dose (20 mg/kg mouse body wt) that is described to be effective in an in vivo dose-response study and confirmed here to be efficacious. There are significant differences in tumor growth between vehicle- and GW 6471-treated animals. No toxicity is observed at the doses of GW 6471 based on weights of the animals, and laboratory values, including kidney and liver function tests, are not adversely affected. To demonstrate on-target effects of GW 6471, c-Myc levels are evaluated in the tumors, which show significant decreases in the GW 6471-treated animals[3].
In Vitro: In a cell-based reporter assay, GW 6471 completely inhibits GW409544-induced activation of PPARα with an IC50 of 0.24 μM[1]. The functional role of PPARα is evaluated on renal cell carcinoma (RCC) cell viability by MTT assay. Both Caki-1 (VHL wild type) and 786-O (VHL mutated) cells are incubated separately with a specific PPARα agonist, WY14,643, or a specific PPARα antagonist, GW 6471 at concentrations from 12.5 to 100 µM for 72 hours, and cell viability is assessed. While WY14,643 either has no affect on, or slightly increased, cell viability, GW 6471 significantly and dose-dependently inhibits cell viability (up to approximately 80%) in both cell lines[2].
Cell Assay: 786-O and Caki-1 cells are plated in 96 well plates. Both cells are incubated separately with WY14,643 or GW 6471 at concentrations from 12.5 to 100 µM for 72 hours, and after the indicated treatments, the cells are incubated in MTT solution/media mixture. Then, the MTT solution is removed and the blue crystalline precipitate in each well is dissolved in DMSO. Visible absorbance of each well at 540 nm is quantified using a microplate reader[2].
Animal Administration: Mice[3] Male athymic Nu/Nu mice (8 wk of age, ~25 g body wt) are injected with 1×105 Caki-1 cells subcutaneously (3:1 DMEM-Matrigel) in the flank region. Tumor progression is monitored weekly by calipers. When tumor size reaches ~80-100 mm3, animals are randomly assigned to four groups and treatments are started (day 1). The vehicle group receive DMSO (4% in PBS) intraperitoneally and vegetable oil via oral gavage. The PPARα group is injected intraperitoneally with GW 6471 in the same vehicle (20 mg/kg body wt; murine dose response is reported elsewhere) every other day. The Sunitinib group receive Sunitinib in vegetable oil via oral gavage (40 mg/kg body wt) 5 days/wk. Another group receive GW 6471+Sunitinib. To determine any potential toxicity of the treatment(s), body weights of the animals are measured and signs of adverse reactions are monitored. On day 28, the mice are euthanized and the tumor mass is determined. Tumor growth rate is calculated[3].
References: [1]. Xu HE, et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature. 2002 Feb 14;415(6873):813-7. [2]. Abu Aboud O, et al. Inhibition of PPARα induces cell cycle arrest and apoptosis, and synergizes with glycolysisinhibition in kidney cancer cells. PLoS One. 2013 Aug 7;8(8):e71115. [3]. Abu Aboud O, et al. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth. Am J Physiol Cell Physiol. 2015 Jun 1;308(11):C890-8.
MSDS
COA
LOT NO. DOWNLOAD
2018-0101
2018-0101
Cat. No. Product name Field of application
DC33635 DODAP DODAP, also known as 1,2-Dioleoyl-3-dimethylammonium-propane, is a cationic lipid. It has been used as a component in liposomes that can be used to encapsulate siRNA, immunostimulatory oligodeoxynucleotides, antisense oligonucleotides, or chemotherapeutic agents for in vitro and in vivo delivery.
DC58047 DSPE-PEG 2000 PEG2000-DSPE is used for creating micelles that are able to carry drugs with low solubility.
DC31000 LP-01 LP-01 is an ionizable cationic amino lipid (pKa = ~6.1). It has been used in the generation of lipid nanoparticles (LNPs). LNPs containing LP-01 and encapsulating both Cas9 mRNA and modified single-guide RNA (sgRNA) for the transport protein transthyretin (Ttr) induce gene editing in liver cells in mice in a dose-dependent manner resulting in reduced serum Ttr levels for at least 12 months.
DC66546 R-Sirpiglenastat R-Sirpiglenastat is the R- isomer of Sirpiglenastat(DRP-104).Sirpiglenastat (DRP104) is a broad acting glutamine antagonist. Sirpiglenastat has anticancer effects by directly targeting tumor metabolism and simultaneously inducing a potent antitumor immune response.
DC60597 AZD0780 AZD0780 is the first oral small molecule PCSK9 inhibitor for the treatment of hypercholesterolemia.
DC66114 FAPI-46 FAPI46 is a quinoline-based fibroblast activation protein (FAP)-targeted radiotracer. FAPI-46 has higher tumor uptake and prolonged tumor accumulation. FAPI 46 can be used for tumor imaging of a multitude of different cancers.
DC60580 Endosidin5(ES5) Endosidine 5 (ES5), is one of the most potent small molecules interferes with recycling endosomes through Annexin A6, thereby promoting the release and expression of mRNA into the cytoplasm. The delivered mRNAs is greatly enhanced via inhibition of endocytic recycling in cells and in live mice. NAV2729 (NAV) and endosidin 5 (ES5), resulted in significant enhancement (1.5–2 folds) of LNP-mediated delivery of Fluc mRNAs. Incubation of NAV and ES5 together caused modest further increases in Fluc expression in comparison to the sole application of either compound.
DC90056 PLX-5622 HCl form (water solubility form) PLX5622 is the HCl salt form of PLX-5622, which has better water solubility.PLX-5622 is a highly selective brain-penetrant CSF1R inhibitor (IC50=0.016 µM; Ki=5.9 nM) allowing for extended and specific microglial elimination, preceding and during pathology development.
DC60559 PT-179 PT-179 is a new orthogonal immunomodulatory drug (IMiD) derivative that binds CRBN but does not induce degradation of off-target proteins. PT-179 potently degrades proteins fused to SD40 at either the N or C terminus.
DC65841 MC1 MC1 is a selective and potent inhibitor for COX-2, and [11C]MC1 detected COX-2 in nonhuman primates after intracerebral injection of an inflammogen.
X