Home > Products
Cat. No. Product name CAS No.
DC66156 DSPE-TK-PEG-cRGD Featured

DC66157 DSPE-TK-mPEG Featured

DC66158 DOPE-PEG-Streptavidin Featured

DOPE-PEG is a versatile phospholipid derivative with unique properties that make it suitable for various applications. Its hydrophobic and hydrophilic nature enables efficient encapsulation and delivery of drugs and nucleic acids, making it a valuable tool in drug delivery systems and gene therapy. Additionally, DOPE-PEG can enhance the stability and circulation time of liposomes, improving their efficacy as drug carriers.

DC66159 DSPE-PEG-BSA Featured

Bovine serum albumin (BSA), a globulin in bovine serum, contains 607 amino acid residues with a molecular weight of 66.446KDa and an isoelectric point of 4.7. Bovine serum albumin has been widely used in biochemical experiments. The total length of BSA precursor protein is 607 amino acids. The precursor protein removes 18 signaling peptides and 6 propeptides from the N terminal to form a mature BSA protein with 583 amino acids and a molecular weight of about 66.5kDa. The surface of BSA contains a large number of carboxyl and amino groups, which can be used to bind the activated groups on the surface, and can be used as a carrier of small molecules. BSA is coupled with antibodies to form carrier-haptens conjugate.

DC66160 DSPE-PEG-Heparin Featured

Heparin, named after its discovery in the liver, is a mucopolysaccharide sulfate composed of glucosamine, L-idosaccharide, n-acetylglucosamine and D-glucuronic acid, with an average molecular weight of 15KDa and a strong acid. It is also found in tissues such as lungs and intestinal mucosa, and is a natural anticoagulant in animals. Naturally occurring in mast cells, it is now mainly extracted from the mucous membrane of the bovine lung or the small intestine of pigs. As an anticoagulant, it is a polymer formed by alternating connection of two polysaccharides, which has kang ningxue effect both in vivo and in vitro. Mainly used for extracorporeal circulation, hemodialysis and so on. With the development of pharmacology and clinical medicine, the application of heparin continues to expand.

DC66161 DSPE-PEG-HSA Featured

Serum protein is the most abundant protein in plasma. Each protein molecule can carry seven fatty acid molecules. These fatty acid molecules bind to gaps in the protein, where their carbon-rich tails are buried safely away from surrounding water molecules. Serum proteins can also carry many other molecules that are insoluble in water. Serum proteins, in particular, can carry many drug molecules, such as ibuprofen. Human serum albumin (HSA) is a highly water-soluble globular monomer plasma protein with a relative molecular weight of 67KDa, composed of 585 amino acid residues, one sulfhydryl group and 17 disulfide bonds. In nanoparticle carriers, HSA nanoparticles are characterized by their ability to bind to various drug molecules, stability during storage and in vivo use, non-toxicity and antigenicity, biodegradability, repeatability, amplification of the production process and better control of release characteristics

DC66162 DSPE-PEG-Transferrin Featured

The transferrin receptor (TfR) is a transmembrane glycoprotein whose function is to mediate iron absorption through its interaction with transferrin. In normal cells, the expression level of the receptor is low, and the expression of the transferrin receptor in cells (chronic lymphocytic non-Hodgkin tumors) is significantly increased due to the increased demand for iron in rapidly growing cells [2-4]. At present, two transferrin receptors, TfR1 and TfR2, have been found, both of which are type II transmembrane glycoproteins that bind to transferrin and mediate iron absorption. TfR1 is expressed in many cells (such as red blood cells, hepatocytes, monocytes), and can change its conformation according to the change of environmental pH, and convert the results of conformational change into a change in the binding strength of transferrin. TfR2 is mainly expressed in the liver, and its main function may be to regulate and maintain the homeostasis of iron ions in the body, while its role in transporting iron ions to rapidly dividing tissues is weak. Using the effective targeting function of transferrin receptor, the cross-linking of transferrin and drugs can improve the specific binding ability of drugs, but also improve the effect.

DC66163 DSPE-PEG-RGD Featured

RGD's receptors are integrins αvβ3 and αvβ5, which can mimic cell adhesion proteins and bind specifically to 11 kinds of integrins, which can effectively adhere to biological materials. DSPE-PEG-RGD can be used to make micelles and vesicles. The liposomes formed by RGD-PEG-DSPE can act directly on the target to form an active targeting effect. Rgd-peg-dspe peptide RGD polyethylene glycol phospholipid can be used for passive targeting of micelles and vesicles, active targeting research and drug delivery. DSPE (1, 2-distearoyl-SN-glycerol-3-phosphate ethanolamine) is a saturated 18-carbon phospholipid commonly used in the synthesis of liposomes. Polyethylene glycol (PEG) -coupled DSPE is hydrophilic and can be used for drug delivery, gene transfection, and biomolecular modification. Polyethylene glycol can enhance solubility and stability, reduce the nonspecific binding of charged molecules, and reduce the immunogenicity of polypeptides.

DC66164 DSPE-PEG-Streptavidin Featured

The streptavidin molecule consists of four identical peptide chains, and the contents of glycine and alanine are relatively large in the amino acid composition, and the active group binding biotin is also the tryptophan residue in the peptide chain. Streptavidin is a slightly acidic (pH6.0) protein and does not carry any sugar groups. Under the action of proteolytic enzyme, streptavidin can be broken between N-terminal 10 ~ 12 and C-terminal 19 ~ 21, and the formed core streptavidin still maintains the complete ability to bind biotin. The activity unit of streptavidin is also expressed in terms of the amount required to bind 1μg biotin, and the high activity of 1mg streptavidin can reach 18U. streptavidin (SA) is a protein secreted by streptomyces avidinii with a molecular weight of 65kD. Streptavidin molecules are composed of four identical peptide chains, each of which can bind a biotin without any sugar group, so like avidin, one streptavidin molecule can also bind four biotin molecules, and the affinity constant (K) of both is 1015mol/L. Streptavidin is more widely applicable than avidin.

DC66165 DSPE-PEG-Lactoferrin Featured

The affinity between lactoferrin and iron ion is very high, which is 250 to 300 times that of transferrin. According to the difference of lactoferrin binding iron ions, it can be divided into three types: iron deficiency type, iron semi-satiation type and iron saturated type. Different types of lactoferrin have different ability to resist pasteurization thermal denaturation, in which iron saturated type resistance is strong, iron deficiency type resistance is weak. Lactoferrin can bind not only Fe3+ and Fe2+, but also Cu2+, Mn2+ and Zn2+.

DC66166 DSPE-PEG-Glucose;DSPE-PEG2000-Glucose Featured

Glucose, organic compound, molecular formula C6H12O6. It is one of the most widely distributed and important monosaccharides in nature, and it is a polyhydroxyaldehyde. Glucose plays an important role in the field of biology, that is, the main energy supplier of living things. Plants produce glucose through photosynthesis. Liposome has the advantages of low toxicity, easy preparation, as a carrier of both water-soluble and fat-soluble drugs, suitable for a variety of drug delivery routes, improve drug stability, and achieve targeted drug delivery. However, after the liposome enters the body, it is easy to be taken up and cleared by RES cells due to the specific conditioning effect of opsonins in plasma on the liposome and the non-specific hydrophobic interaction between RES cells and liposome.

DC66168 DSPE-PEG-ICG Featured

DSPE phospholipids can be used as pharmaceutical excipients for emulsification and drug solubilization, and are important materials for slow release drug preparations such as liposomes, fat milk and nanoparticles in recent years. Modification of phospholipid molecules can make these preparations have the ability of release and targeting under specific conditions. Common modification methods include: disintegration time; Introducing immune factors to enhance targeting; Introduce markers for diagnosis and tracking.

DC66169 DPPE-PEG-Folate Featured

DPPE-PEG is a synthetic lipid used in liposomes with unique properties and a wide range of applications. Firstly, DPPE-PEG exhibits excellent biocompatibility and solubility, allowing it to remain stable within the biological system and be efficiently absorbed and metabolized. Additionally, DPPE-PEG possesses good surface activity, which helps stabilize the liposome structure and enhance its stability.

DC66170 DPPE-PEG-Biotin Featured

DPPE-PEG is a synthetic lipid used in liposomes with unique properties and a wide range of applications. Firstly, DPPE-PEG exhibits excellent biocompatibility and solubility, allowing it to remain stable within the biological system and be efficiently absorbed and metabolized. Additionally, DPPE-PEG possesses good surface activity, which helps stabilize the liposome structure and enhance its stability.

DC66171 DOPE-PEG-Mal (MW 2000) Featured

DOPE-PEG-Mal (MW 2000) is a phospholipid polyPEG which can be used to prepare liposomes or nanoparticles. It is also reactive with thiol at pH 6.5 tp 7.5 to form a stable thioether bond.

DC66172 DPPE-PEG-COOH Featured

DPPE-PEG is a synthetic lipid used in liposomes with unique properties and a wide range of applications. Firstly, DPPE-PEG exhibits excellent biocompatibility and solubility, allowing it to remain stable within the biological system and be efficiently absorbed and metabolized. Additionally, DPPE-PEG possesses good surface activity, which helps stabilize the liposome structure and enhance its stability.

DC66173 DPPE-PEG-NH2;DPPE-PEG-amine Featured

DPPE-PEG is a synthetic lipid used in liposomes with unique properties and a wide range of applications. Firstly, DPPE-PEG exhibits excellent biocompatibility and solubility, allowing it to remain stable within the biological system and be efficiently absorbed and metabolized. Additionally, DPPE-PEG possesses good surface activity, which helps stabilize the liposome structure and enhance its stability.

DC66174 DMPE-PEG-CY5 Featured

DMPE-PEG, a synthetic lipid, possesses unique properties and finds extensive applications as liposomes. Firstly, DMPE-PEG exhibits excellent biocompatibility and solubility, allowing for its stable presence and efficient absorption and metabolism in vivo. Additionally, DMPE-PEG possesses good surface activity, aiding in the stabilization of liposome structures and enhancing their stability.

DC60590 GS-4224 Featured

GS-4224 is a novel, orally bioavailable inhibitor of PD-L1 with EC50 of 11 nM in high level PD-L1 concentration. GS-4224 shows evidence of expected on-target biomarker activity, including engagement of PD-L1 and induction of immune-related pharmacodynamic responses consistent with PD-L1 blockade.

DC66175 DMPE-PEG-Rhodamine B Featured

DMPE-PEG, a synthetic lipid, possesses unique properties and finds extensive applications as liposomes. Firstly, DMPE-PEG exhibits excellent biocompatibility and solubility, allowing for its stable presence and efficient absorption and metabolism in vivo. Additionally, DMPE-PEG possesses good surface activity, aiding in the stabilization of liposome structures and enhancing their stability.

DC66176 DMPE-PEG-FITC Featured

DMPE-PEG, a synthetic lipid, possesses unique properties and finds extensive applications as liposomes. Firstly, DMPE-PEG exhibits excellent biocompatibility and solubility, allowing for its stable presence and efficient absorption and metabolism in vivo. Additionally, DMPE-PEG possesses good surface activity, aiding in the stabilization of liposome structures and enhancing their stability.

DC66177 DMPE-PEG-Folate Featured

DMPE-PEG, a synthetic lipid, possesses unique properties and finds extensive applications as liposomes. Firstly, DMPE-PEG exhibits excellent biocompatibility and solubility, allowing for its stable presence and efficient absorption and metabolism in vivo. Additionally, DMPE-PEG possesses good surface activity, aiding in the stabilization of liposome structures and enhancing their stability.

Page 1876 / Total 1921 FirstPrevNextLastGoto