TY-52156

  Cat. No.:  DC24077   Featured
Chemical Structure
934369-14-9
For research use only. We do not sell to patients.
We match the best price and quality on market.
Email:order@dcchemicals.com  sales@dcchemicals.com
Tel:+86-021-58447131
We are official vendor of:
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 9
  • 8
  • 13
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
More than 5000 active chemicals with high quality for research!
Field of application
TY-52156 is a potent and selective inhibitor of S1P3 receptor (Ki=110 nM).
Cas No.: 934369-14-9
Chemical Name: Butanimidic acid, N-(4-chlorophenyl)-3,3-dimethyl-2-oxo-, 2-(4-chlorophenyl)hydrazide
Synonyms: TY52156;TY 52156
SMILES: ClC1C=CC(N=C(C(=O)C(C)(C)C)NNC2C=CC(Cl)=CC=2)=CC=1
Formula: C18H19Cl2N3O
M.Wt: 364.269
Purity: >98%
Sotrage: 2 years -20°C Powder, 2 weeks 4°C in DMSO, 6 months -80°C in DMSO
Publication: [1]. Murakami A, et al. Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol. 2010 Apr;77(4):704-13.
Description: TY-52156 is a potent S1P3 receptor antagonist in a competitive manner, and the Ki value is estimated to be 110 nM for S1P3 receptor.
Target: IC50 value: 110 nM (Ki) Target: S1P3
In Vivo: TY-52156 Suppresses S1P3 Receptor-Induced Bradycardia In Vivo. the oral administration of TY-52156 inhibits S1P3 receptor-dependent bradycardia. [1]
In Vitro: TY-52156 shows submicromolar potency and a high degree of selectivity for S1P3 receptor. TY-52156 is both sensitive and useful as an S1P3 receptor-specific antagonist and reveal that S1P induces vasoconstriction by directly activating S1P3 receptor and through a subsequent increase in [Ca2+]i and Rho activation in vascular smooth muscle cells. TY-52156 has a selective antagonistic effect toward S1P3 receptor. [1]
References: [1]. Murakami A, et al. Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol. 2010 Apr;77(4):704-13.
MSDS
COA
LOT NO. DOWNLOAD
2018-0101
2018-0101
Cat. No. Product name Field of application
DC33635 DODAP DODAP, also known as 1,2-Dioleoyl-3-dimethylammonium-propane, is a cationic lipid. It has been used as a component in liposomes that can be used to encapsulate siRNA, immunostimulatory oligodeoxynucleotides, antisense oligonucleotides, or chemotherapeutic agents for in vitro and in vivo delivery.
DC31074 Isopropyl myristate Isopropyl myristate is the ester of isopropyl alcohol and myristic acid.
DC74557 PREX-in1 PREX-in1 is a specific small-molecule inhibitor of P-Rex1 and P-Rex2 Rac-GEF activity with IC50 of 4.5 uM (P-Rex1 DHPH Rac-GEF activity) in liposome-based GEF assay, inhibits P-Rex1 and P-Rex2 through their catalytic DH domain.
DC74555 GYS32661 GYS32661 (GYS 32661) is a potent Rac inhibitor capable of inhibiting both Rac1 and Rac1b, inhibited activated Rac1 with IC50 of 1.18 uM in in vitro pull-down assays.
DC74539 L557-0155 L557-0155 is a small molecule inhibitor of VSIG-8, prevents VSIG-8 binding to VISTA, promotes cytokine production and cell proliferation in PBMCs and suppresses melanoma growth.
DC74528 K284 K284 is a selective small molecule inhibitor of chitinase 3 like1 (CHI3L1) with strong binding affinity (Kd=-9.7 kcal·mol-1), inhibits lung metastasis by blocking IL-13Rα2-mediated JNK-AP-1 signals.
DC74225 YB-537 YB-537 (YB537) is a potent, highly specific quinone reductase 2 (QR2) inhibitor with IC50 of 3 nM, shows no activity against QR1 (IC50>10 uM).
DC74223 X-Neu5Ac X-Neu5Ac (sodium) is a substrate for chromogenic assay of neuraminidase activity in bacterial expression systems; with a Km of 0.89 mM for neuraminidase.
DC74218 UT-59 UT-59 is a specific inhibitor of cholesterol-sensing membrane protein Scap, binds to Scap's cholesterol-binding site, blocks SREBP activation and inhibits lipid synthesis.
DC74205 Tryptolinamide Tryptolinamide (TLAM) is a small-molecule compound that activates mitochondrial respiration in cybrids generated from patient-derived mitochondria and fibroblasts from patient-derived iPSCs, inhibits phosphofructokinase-1 (PFK1) with an ATP-uncompetitive
X