Home > Inhibitors & Agonists > Others > Other Targets

Other Targets

You can also try the following methods, and our professionals will serve you Customized Consultation
Cat. No. Product Name Field of Application Chemical Structure
DC35098 Dde Biotin-PEG4-DBCO Dde Biotin-PEG4-DBCO is a cleavable reagent for introduction of a biotin moiety to azide-containing biomolecules using copper-free Click Chemistry. Dde protecting group allows efficient release of captured biotinylated molecules from streptavidin under mild conditions with hydrazine. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35099 PC DBCO-PEG3-biotin PC DBCO-PEG3-biotin is useful for introducing a biotin moiety to azide-containing biomolecules using copper-free Click Chemistry. The hydrophilic spacer arm provides better solubility to the labeled molecules in aqueous media. Captured biomolecules can be efficiently photoreleased using near-UV, low intensity lamp (e.g. 365 nm lamp at 1-5 mW/cm2).
DC35100 WSPC Biotin-PEG3-DBCO WSPC Biotin-PEG3-DBCO is useful for introducing a biotin moiety to azide-containing proteins and cell surfaces using copper-free Click Chemistry. This biotin compound is membrane-impermeable due to its water soluble sulfonate group. Captured biomolecules can be efficiently photoreleased using near-UV, low intensity lamp (e.g. 365 nm lamp at 1-5 mW/cm2).
DC35102 Biotin-PEG6-hydrazide Biotin-PEG6-hydrazide is a hydrazide-activated biotinylation reagent used to label glycoproteins, carbohydrate-containing compounds that have oxidizable sugars or aldehydes. Hydrazine moiety reacts with an aldehyde to form semi-permanent hydrazone bonds. The hydrophilic PEG spacer arm imparts water solubility that is transferred to the biotinylated molecule.
DC35103 Biotin-PEG12-hydrazide Biotin-PEG12-hydrazide is a hydrazide-activated biotinylation reagent used to label glycoproteins, carbohydrate-containing compounds that have oxidizable sugars or aldehydes. Hydrazine moiety reacts with an aldehyde to form semi-permanent hydrazone bonds. The hydrophilic PEG spacer arm imparts water solubility that is transferred to the biotinylated molecule.
DC35104 Biotin-PEG2-NH-Boc Biotin-PEG2-NH-Boc is a Biotin PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates (ADCs).
DC35105 Biotin-PEG5-NH-Boc Biotin-PEG5-NH-Boc is a Biotin PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35106 Biotin-EDA-PEG5-NHS Biotin-EDA-PEG5-NHS enables efficient biotinylation of antibodies, proteins and other primary amine-containing biomolecules. NHS-activated biotin compound can react with primary amino groups (-NH2) to form stable, irreversible amide bonds. The hydrophilic PEG spacer arm imparts water solubility that is transferred to the biotinylated molecule.
DC35107 Biotin-EDA-PEG4-PFP Biotin-EDA-PEG4-PFP is a Biotin PEG Linker. This biochemical will react with primary amino groups (-NH2) to form stable, irreversible amide bonds. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35108 Biotin-PEG3-oxyamine HCl Biotin-PEG3-oxyamine HCl salt is an aldehyde-reactive biotinylation reagent. It reacts with an aldehyde to form an oxime bond. If a reductant is used, it will form a hydroxylamine linkage. The hydrophilic PEG spacer arm imparts water solubility that is transferred to the biotinylated molecule.
DC35109 Biotin-PEG11-oxyamine HCl Biotin-PEG11-oxyamine HCl salt is an aldehyde-reactive biotinylation reagent. It reacts with an aldehyde to form an oxime bond. If a reductant is used, it will form a hydroxylamine linkage. The hydrophilic PEG spacer arm imparts water solubility that is transferred to the biotinylated molecule.
DC35110 Biotin-PEG4-SS-NH-PEG3-oxyamine HCl Biotin-PEG4-SS-NH-PEG3-oxyamine HCl salt is a cleavable, aldehyde-reactive biotinylation reagent. It reacts with an aldehyde to form an oxime bond. If a reductant is used, it will form a hydroxylamine linkage. The hydrophilic PEG spacer arm imparts water solubility that is transferred to the biotinylated molecule.
DC35111 Biotin-PEG4-methyltetrazine Biotin-PEG4-methyltetrazine reacts with TCO-containing compounds via an Inverse-Electron-Demand Diels-Alder reaction to form a stable covalent bond and does not require Cu-catalyst or elevated temperatures. The inverse-electron demand Diels-Alder cycloaddition reaction of TCO with tetrazines is a bioorthogonal reaction.
DC35112 Azide-SS-biotin Azide-SS-biotin is a cleavable biotinylation reagent for labeling alkyne-containing biomolecules using click chemistry. The azide group reacts with alkynes to form a stable triazole linkage. The hydrophilic PEG spacer arm imparts water solubility that is transferred to the biotinylated molecule. The disulfide bond in this linker can be cleaved using reducing agents such as DTT, BME and TCEP to remove the biotin label.
DC35113 Biotin-PEG3-SS-azide Biotin-PEG3-SS-azide is a Biotinylating reagent and PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates (ADCs).
DC35114 PC-Biotin-PEG4-NHS carbonate PC-Biotin-PEG4-NHS carbonate is a unique amine reactive, photocleavable biotin reagent that is useful for introducing a biotin moiety to amine-containing biomolecules. The NHS carbonate portion of this compound reacts specifically with primary amine groups on the target molecule(s) to form a carbamate linkage. Captured biomolecules can be efficiently photoreleased using an inexpensive, near-UV, low intensity lamp (e.g. 365 nm lamp at 1-5 mW/cm2).
DC35115 Fmoc-Lys (biotin-PEG4)-OH Fmoc-Lys (biotin-PEG4)-OH is a Lysine embedded biotin PEG derivatives containing a carboxylic group and Fmoc-protected amine. Reaction of carboxylic with primary amino (-NH2) forms stable, irreversible amide bonds. The Fmoc group can be deprotected under basic condition to obtain the free amine which can be used for further conjugations.
DC35116 TAMRA-Azide-PEG-Biotin TAMRA-Azide-PEG-Biotin is a Biotin PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35117 TAMRA-Azide-PEG-Desthiobiotin TAMRA-Azide-PEG-Desthiobiotin is a Biotin PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35118 N-(Biotin)-N-bis(PEG1-alcohol) N-(Biotin)-N-bis(PEG1-alcohol) is a PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35119 N-(Biotin-PEG4)-N-bis(PEG4-acid) HCl N-(Biotin-PEG4)-N-bis(PEG4-acid) HCl salt is a PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35120 2-(Biotin-amido)-1,3-bis(carboxylethoxy)propane 2-(Biotin-amido)-1,3-bis(carboxylethoxy)propane is a Biotin PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35121 N-(Azido-PEG3)-N-Biotin-PEG4-methyl ester N-(Azido-PEG3)-N-Biotin-PEG4-methyl ester is a Biotin PEG Linker. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35122 Bis-PEG1-acid Bis-PEG1-acid is a PEG derivative containing two terminal carboxylic acid groups. The terminal carboxylic acids can be reacted with primary amine groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35123 Bis-PEG2-acid Bis-PEG2-acid is a PEG derivative containing two terminal carboxylic acid groups. The hydrophilic PEG spacer increases solubility in aqueous media. The terminal carboxylic acids can be reacted with primary amine groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35124 Bis-PEG3-acid Bis-PEG3-acid is a PEG derivative containing two terminal carboxylic acid groups. The terminal carboxylic acids can be reacted with primary amine groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35125 Bis-PEG7-acid Bis-PEG7-acid is a PEG derivative containing two terminal carboxylic acid groups. The terminal carboxylic acids can be reacted with primary amine groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond. PEG Linkers may be useful in the development of the antibody drug conjugates.
DC35126 Bis-PEG8-acid Bis-PEG8-acid is a PEG derivative containing two terminal carboxylic acid groups. The terminal carboxylic acids can be reacted with primary amine groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond. PEG Linkers may be useful in the development of antibody drug conjugates.
DC35127 Bis-PEG9-acid Bis-PEG9-acid is a PEG derivative containing two terminal carboxylic acid groups. The terminal carboxylic acids can be reacted with primary amine groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond.
DC35128 Bis-PEG10-acid Bis-PEG10-acid is a PEG derivative containing two terminal carboxylic acid groups. The terminal carboxylic acids can be reacted with primary amine groups in the presence of activators (e.g. EDC, or DCC) to form a stable amide bond. PEG Linkers may be useful in the development of antibody drug conjugates (ADCs).

Customized Consultation X

Your information is safe with us. * Required Fields.

Your name
Company
Email
Procuct Name
Cat. No.
Remark
Verification code
Please fill out the characters in the picture
X