Home > RNA Delivery

RNA Delivery

You can also try the following methods, and our professionals will serve you Customized Consultation
Cat. No. Product Name Field of Application Chemical Structure
DC66219 Lipid 88 Lipid 88 is an ionizable cationic lipid that has been used in the generation of lipid nanoparticles (LNPs) for the delivery of mRNA in vivo.1 LNPs containing lipid 88 and encapsulating mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein increase anti-spike glycoprotein IgG titers in bronchoalveolar lavage fluid (BALF), as well as increase the percentage of CD8+, CD8+CD44+, CD4+, and CD4+CD44+ T cells in the lungs and spleen, in mice after two doses three weeks apart. LNPs containing lipid 88 and encapsulating mRNA expressing SARS-CoV-2 spike glycoprotein inhibit reductions in body weight, increase serum levels of anti-spike glycoprotein IgG and IgA titers, and reduce lung and nasal wash viral titers in a hamster model of SARS-CoV-2 Omicron BQ.1 subvariant infection.
DC66258 DSPE-PEG-Dopamine Featured DSPE phospholipids can be used as pharmaceutical excipients for emulsification and drug solubilization, and are important materials for slow release drug preparations such as liposomes, fat milk and nanoparticles in recent years
DC66259 DSPE-Hyd-PEG-NPC Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66260 DSPE-Hyd-PEG-Alkyne Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66261 DSPE-Hyd-PEG-SH Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66262 DSPE-Hyd-PEG-FA Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66263 DSPE-Hyd-PEG-OH Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66264 DSPE-Hyd-PEG-N3 Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66265 DSPE-Hyd-PEG-Silane Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66266 DSPE-Hyd-PEG-Biotin Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66267 DSPE-Hyd-PEG-NHS Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66268 DSPE-Hyd-PEG-Mal (MW 2000) Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66269 DSPE-Hyd-PEG-COOH Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66270 DSPE-Hyd-PEG-Cholesterol Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66271 DSPE-Hyd-PEG-cRGD Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66272 DSPE-Hyd-PEG-FITC Featured DSPE-Hyd-PEG, also known as distearoylphosphoethanolamine-hydrazide-polyethylene glycol, is a type of lipid-based polymer that has various applications in drug delivery and biomedical research. One of the main applications of DSPE-Hyd-PEG is in the field of targeted drug delivery. It is often used as a component of liposomes or lipid nanoparticles to improve the stability and targeting ability of drug carriers. DSPE-Hyd-PEG can be conjugated with targeting ligands, such as antibodies or peptides, to specifically bind to receptors on the surface of target cells. This targeted drug delivery system allows for more efficient and selective delivery of therapeutic agents to the desired site, while minimizing off-target effects.
DC66273 DSPE-PEG-CHO Featured DSPE phospholipids can be used as pharmaceutical excipients for emulsification and drug solubilization, and are important materials for slow release drug preparations such as liposomes, fat milk and nanoparticles in recent years. Modification of phospholipid molecules can make these preparations have the ability of release and targeting under specific conditions. Common modification methods include: disintegration time; Introducing immune factors to enhance targeting; Introduce markers for diagnosis and tracking. A covalent bond in the carbonyl group is connected to the hydrogen atom and formed by a univalent atomic group, called aldehyde group, aldehyde group structure simple formula is -CHO, aldehyde group is a hydrophilic group, so the organic matter with aldehyde group (such as acetaldehyde, etc.) has a certain water solubility. Aldehydes, sugars, aldehydes, glucose, maltose and other molecules contain aldehyde groups. The aldehydes are active and prone to condensation and nucleophilic addition reactions. The aldehyde group can be reduced to hydroxymethyl (-CH2OH) or oxidized to carboxylic (-COOH).
DC66274 DSPE-PEG-TPP Featured Triphenyl phosphate is odorless, odorless white crystalline block or powder, its chemical formula is C18H15O4P, it is insoluble in cold water, but soluble in hot water above 50℃, when the solution temperature is reduced to room temperature, hydrophobic, precipitated from the solution. Slightly soluble in alcohol, soluble in ben, chloroform, C tong, easily soluble in ethyl mi. Triphenyl phosphate can be used as cellulose resin, vinyl resin, natural rubber and synthetic rubber flame retardant plasticizer with high flame retardant efficiency, excellent mechanical properties retention rate, transparency, softness and toughness, used in cellulose nitrate, various coatings, triacetate thin fat and film. Rigid polyurethane foam, engineering plastics plasticizer, flame retardant additive. Plastics are more and more widely used in construction, transportation, aviation, electrical appliances, daily furniture and other fields, but the fire accidents caused by the flammability of plastics have increasingly become a major problem, so the research and production of flame retardants have developed rapidly. Triphenyl phosphate is one of the main phosphorous flame retardants. (Flame retardant TPP) is a phosphorus-containing compound that can be used as a halogen-free environmentally friendly flame retardant for dissolution in organic solvents. Mainly used as a flame retardant plasticizer for engineering plastics and phenolic resin laminates; Pegylated phospholipids modified by TPP can be applied in drug release, nanotechnology and new materials research, and cell culture. As well as ligand research, peptide synthesis support, grafted polymer compounds, new materials and pegylated modified functional coatings and other active compounds.
DC66275 DSPE-PEG-DBCO Featured DSPE-PEG-DBCO is a kind of highly active phospholipid PEG derivative which can react with azide group. DBCO (dibenzocycloctene) is a commonly used copper-free click chemical with rapid and specific reactivity to molecules containing azides (-N3). DBCO-PEG derivatives have fast kinetics and good stability in aqueous buffers. The reaction between DBCO and the azide group allows DSPE to label and bind to the target substrate efficiently. DSPE (1, 2-distearoyl-SN-glycerol-3-phosphate ethanolamine) is a highly hydrophobic 18-carbon saturated phospholipid. Pegylated phospholipids are excellent liposomal preparation materials, which can be used for molecular encapsulation, gene transfection and drug delivery. Copper-free chemical reaction with easily synthesized diaryl azacycloctanone. Reactions of azide compounds with tense alkynes, such as cyclocycloalkynes, easily form triazole compounds without the need for toxic catalysts.
DC66276 DSPE-PEG-Cholesterol Featured DSPE-PEG-CLS is a phospholipid PEG derivative used in liposome preparation, phospholipid polyethylene glycol binding with hydrophilic and hydrophobic, polyethylene glycol phospholipid liposome formation material, which can be used for drug delivery, gene transfection and vaccine delivery. Cholesterol is the basic substance of cell membrane and liposome, is also an indispensable important substance of animal tissue cells, it not only participates in the formation of cell membrane, but also is the raw material of synthesis of bile acid, vitamin D and steroid hormone.
DC66277 DSPE-PEG-TCO (MW 2000) Featured DSPE-PEG-TCO (MW 2000) is a PEG lipid that can improve the delivery efficiency and tissue specificity of poorly soluble drugs. DSPE-PEG-TCO (MW 2000) can be used in drug delivery research.
DC66278 DSPE-PEG-AC Featured DSPE-PEG-AC phospholipid PEG derivative used in the preparation of liposomes, phospholipatized polyethylene glycol binding has both hydrophilic and hydrophobic properties. Acrylate functionalized PEG is a common polymer for preparing biocompatible and biodegradable hydrogels and other biopolymers. Functionalized polyethylene glycol can be used to modify proteins, peptides, and materials, but also to increase solubility and stability, and reduce peptide and protein immunogenicity. It can also inhibit the non-specific combination of charged molecules to modify the surface. The product can be used in drug release, nanotechnology and new materials research, cell culture. As well as ligand research, peptide synthesis support, grafted polymer compounds, new materials and pegylated modified functional coatings and other active compounds.
DC66279 DSPE-PEG-PEI Featured Polyethyleneimine (PEI), also known as polyethyleneimine, is a water-soluble polymer. Colorless or yellowish viscous liquid, hygroscopic, soluble in water, ethanol, insoluble in benzene. PEG-PEI, a copolymer of cationic poly (ethylene imide) (PEI) and polyethylene glycol (PEG), is a well-studied compound that significantly improves the delivery of oligonucleotides and nucleic acids (DNA, siRNA) in vitro and in vivo. By varying the MW of PEI and PEG, PEG-PEI drug conjugates, polymers, or nanoparticles with dynamic range of size, surface charge, and stability can be prepared, all of which are important for transfection efficiency. PEI-PEG-DSPE, polyethylenimine-PEGyl-phospholipid is an AB block copolymer with phospholipids at the end of PEG that can be used in drug delivery systems. DSPE, 1, 2-distearoyl-SN-glycerol-3-phosphate ethanolamine is a synthetic phospholipid that can be used as a membrane material with solubility and is suitable for the development of liposomes and phospholipid complexes.
DC66280 DSPE-PEG-DOTA Featured Macrocyclic ligands are ring complexes formed by multi-dentate ligands with O, N, P, S and other coordination atoms on the ring skeleton. The range of complexes is wide. According to their structural characteristics, complexes can be divided into the following types: simple complexes, chelates, polynuclear complexes, carbonyl complexes, metal clusters, sandwich complexes, and macrocyclic ligand complexes.
DC66281 DSPE-PEG-VE Featured 2-Distearoyl-sn-Glycero-3-Phosphoethanolamine(DSPE) conjugated polyethylene glycol is a combination of phospholipid and polyethylene glycol, which has hydrophilicity and hydrophobicity. Polyethylene glycol phospholipid liposomes can be used for drug delivery, gene transfection and vaccine delivery. Pegylated phospholipids can significantly improve blood circulation time and stabilize drug encapsulation. These materials can also be used for targeted drug delivery by modifying ligands with target surfaces such as antibodies and peptides,Liposomes.
DC66283 DSPE-PEG-Silane Featured DSPE-PEG-Silane is a surface-active phospholipid PEG derivative that can be used to modify the surfaces of glass, silica particles, and many other materials. DSPE-PEG-Silane is used as a PEG matrix in the preparation of pharmaceutical nanoparticles and can be used to control particle size and stability. It can also be applied to the preparation of biocompatible nanocarriers, such as nanoparticle carriers. Silyl groups are highly reactive to glass, silica, and many other materials. The reaction between alkoxysilane and the surface hydroxyl group makes the phospholipid PEG covalently attached to the surface of the modified material. Non-specific binding on the surface of PEG modified materials.
DC66290 DSPE-PEG-Mannose Featured DSPE (1,2-distearoyl-sn glycerol-3-phosphoethanolamine) is a saturated 18C phospholipid commonly used in liposome synthesis. Polyethylene glycol (PEG) conjugated DSPE has hydrophilicity and hydrophobicity, and can be used for drug delivery, gene transfection, and biomolecular modification. DSPE-PEG-Manose can be applied in medical research, drug release, nanotechnology and new material research, and cell culture. As well as ligand research, peptide synthesis support, grafting of polymer compounds, new materials, and polyethylene glycol modified functional coatings and other active compounds.
DC66291 DSPE-PEG-OPSS Featured DSPE-PEG-OPSS, DSPE (1,2-distearoyl-sn-glycerol-3-phosphoethanolamine) is a saturated 18 carbon phospholipid, commonly used in the synthesis of liposomes. Polyethylene glycol (PEG) - coupled DSPE is hydrophilic and can be used for drug delivery, gene transfection and biomolecular modification. The PEG of phospholipid significantly improved the blood circulation time and stability of the capsule drug. Polyethylene glycol can enhance the solubility and stability, reduce the non-specific binding of charged molecules on the surface, and reduce the immunogenicity of polypeptides. Mercaptopyridine reacts with mercapto group to release pyridine ring and generate stable disulfide bond.
DC66292 DSPE-PEG-NPC Featured DSPE-PEG-NPC is a linear heterobifunctional polyglycolation reagent containing DSPE phospholipids and NPC groups. It is a useful self-assembly reagent for preparing PEGylated liposomes or micelles, and also provides a combination of NPC group and thiol containing molecules.
DC66293 DSPE-PEG-N3 Featured DSPE-PEG-N3 is a click chemical PEG reagent. Azide group is easy to react with alkynyl group under the catalysis of copper catalyst. It can also react directly with DBCO without any catalyst. DSPE (1,2-distearoyl-sn-glycerol-3-phosphoethanolamine) is a saturated 18 carbon phospholipid, which is commonly used in the synthesis of liposomes. Polyethylene glycol (PEG) - coupled DSPE is hydrophilic and can be used for drug delivery, gene transfection and biomolecular modification. The PEG of phospholipid significantly improved the blood circulation time and stability of the capsule drug. Polyethylene glycol can enhance the solubility and stability, reduce the non-specific binding of charged molecules on the surface, and reduce the immunogenicity of polypeptides. Azide (- N3) can react with copper catalyzed alkynes in aqueous solution and be reduced to amino groups. Polyethylene glycol can increase solubility and stability. It can also inhibit the nonspecific binding of charged molecules on the modified surface.

Customized Consultation X

Your information is safe with us. * Required Fields.

Your name
Company
Email
Procuct Name
Cat. No.
Remark
Verification code
Please fill out the characters in the picture
X
>