Alternate Text DC Chemicals' products qualify for U.S. tariff exemptions. We guarantee no price increases due to customs duties and maintain stable supply, continuing to deliver reliable research solutions to our American clients.

Amphotericin B

  Cat. No.:  DC33388   Featured
Chemical Structure
1397-89-3
For research use only. We do not sell to patients.
We match the best price and quality on market.
Email:order@dcchemicals.com  sales@dcchemicals.com
Tel:+86-021-58447131
We are official vendor of:
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 9
  • 8
  • 13
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
More than 5000 active chemicals with high quality for research!
Field of application
Amphotericin B binds ergosterol and induces membrane pore formations, increasing ROS and suppressing fungal growth. It also increases expression of IL-1-beta, TNF-alpha, BDNF and GDNF and protects against prion-induced neurodegeneration.
Cas No.: 1397-89-3
Chemical Name: Amphotericin B
Synonyms: Amphotericin B;33-[(3-amino-3,6-dideoxy-beta-d-mannopyranosyl)oxy]-1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid;ABELCET;AMBISOME;AMPHOTERCIN B;AMPHOTERICIN B SOLUBILIZED;AMPHOTERICIN B, SOLUBLE;AMPHOTERICIN B, STREPTOMYCES NODOSUS;AMPHOTERICIN B, STREPTOMYCES SPECIES;AMPHOZONE;FUNGIZONE;FUNGIZONE(R);Amphotericin B trihydrate;Abelecet;Amphocin;AMPHOTERICIN B, NON STERILE;fungilin;Halizon;LNS-AmB;ns718;Fungizone;33-[(3-Amino-3,6-dideoxy-beta-D-mannopyranosyl)oxy]-1,3,5,6,9,11,17,37-octahydroxy-15,16,18-trimethyl-13-oxo-14,39-Dioxabicyclo[33.3.1]nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carboxylic acid;F;amphotericineb;amphotericinbstandardsolution;ampho-moronal;amphomoronal;33-((3-amino-3,6-dideoxy-beta-d-mannopyranosyl)oxy)-1,3,5,6,9,11,-xylicaci;14,39-dioxabicyclo(33.3.1)nonatriaconta-19,21,23,25,27,29,31-heptaene-36-carbo
SMILES: C1=CC=CC=CC=C[C@H](O[C@@H]2O[C@H](C)[C@@H](O)[C@H](N)[C@@H]2O)C[C@H]2[C@@H]([C@H](C[C@@](O2)(O)C[C@@H](O)C[C@@H](O)[C@H](O)CC[C@@H](O)C[C@@H](O)CC(=O)O[C@@H](C)[C@H](C)[C@H](O)[C@@H](C)C=CC=CC=C1)O)C(=O)O |c:6,57,t:0,2,4,59,61,&1:8,10,12,14,16,18,21,22,23,25,29,32,34,38,41,47,49,51,53|
Formula: C47H73NO17
M.Wt: 924.079036474228
Purity: >98%
Sotrage: 2 years -20°C Powder, 2 weeks 4°C in DMSO, 6 months -80°C in DMSO
Description: Amphotericin B is a polyene antifungal agent against a wide variety of fungal pathogens. It binds irreversibly to ergosterol, resulting in disruption of membrane integrity and ultimately cell death.
Target: Fungal[1]
In Vivo: Amphotericin B results in prolonging the incubation time and decreasing PrPSc accumulation in the hamster scrapie model. Amphotericin B markedly reduces PrPSc levels in mice with transmissible subacute spongiform encephalopathies (TSSE)[4]. Amphotericin B exerts a direct effect on Plasmodium falciparum and influences eryptosis of infected erythrocytes, parasitemia and hostsurvival in murine malaria. Amphotericin B tends to delay the increase of parasitemia and significantly delays host death plasmodium berghei-infected mice[5].
In Vitro: Amphotericin B administration is limited by infusion-related toxicity, including fever and chills, an effect postulated to result from proinflammatory cytokine production by innate immune cells. Amphotericin B induces signal transduction and inflammatory cytokine release from cells expressing TLR2 and CD14[1]. Amphotericin B interacts with cholesterol, the major sterol of mammal membranes, thus limiting the usefulness of Amphotericin B due to its relatively high toxicity. Amphotericin B is dispersed as a pre-micellar or as a highly aggregated state in the subphase[2]. Amphotericin B only kills unicellular Leishmania promastigotes (LPs) when aqueous pores permeable to small cations and anions are formed. Amphotericin B (0.1 mM) induces a polarization potential, indicating K+ leakage in KCl-loaded liposomes suspended in an iso-osmotic sucrose solution. Amphotericin B (0.05 mM) exhibits a nearly total collapse of the negative membrane potential, indicating Na+ entry into the cells[3].
Kinase Assay: THP-1 and HEK293 cells are transiently transfected using DEAE-dextran and Polyfect reagent, respectively. Plasmids transfected contain genes coding for the NF-κB-dependent pELAM-luc luciferase reporter, TLR2, TLR4, CD14, and MD2. Cells (5×105 THP-1 or 1×105 HEK293) are added to 12-well plates, washed after 18 h, and stimulated for 5 h. Cells are then lysed with reporter lysis buffer as directed, and lysates are analyzed for luminescence using Promega luciferase substrate and a Monolight 3010 luminometer.
Cell Assay: The kinetics of cell death induced by AmB against Leishmania promastigotes is followed by using fluorometry with the DNA-binding compound ethidium bromide (EB). Fluorescence measurements are performed on a SPEX Fluorolog II spectrophotometer at 365-580 nm excitation-emission wavelengths. Promastigotes at a final concentration of 25×106 cells/mL are incubated for 5 min with gentle stirring in the fluorescence cuvette with 2 mL of different buffered solutions but always containing 10 mM glucose and EB (50 mM). After signal stabilization is achieved, AmB is added and dissolved in dimethylsulfoxide. Maximal EB incorporation is always obtained by adding digitonin (50 mg/mL). All solutions used are buffered with 75 mM TRIS (pH 4 7.6) and contain 150 mM NaCl (BNa+), 150 mM KCl (BK+), 150 mM choline chloride, and 100 mM sucrose, 100 mM NaCl. The osmolarity of all solutions is always adjusted to 390±5 mOsm using an advanced instrument SW2 osmometer.
References: [1]. Sau K, et al. The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J Biol Chem. 2003 Sep 26;278(39):37561-8. Epub 2003 Jul 14. [2]. Barwicz J, et al. The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergosterol-containing phosphatidylcholine monolayers. Chem Phys Lipids. 1997 Feb 28;85(2):145-55. [3]. Ramos H, et al. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Membr Biol. 1996 Jul;152(1):65-75. [4]. Demaimay R, et al. Pharmacological studies of a new derivative of amphotericin B, MS-8209, in mouse and hamster scrapie. J Gen Virol. 1994 Sep;75 (Pt 9):2499-503. [5]. Adams ML, et al. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules. 2003 May-Jun;4(3):750-7.
MSDS
TITLE DOWNLOAD
MSDS_15699_DC33388_1397-89-3
COA
LOT NO. DOWNLOAD
Cat. No. Product name Field of application
DC31074 Isopropyl myristate Isopropyl myristate is the ester of isopropyl alcohol and myristic acid.
DC75868 AZ14133346 AZ14133346 (compound 36) is a potent and selective inhibitor of EGFR Exon20 insertions, with the IC50 of 85 nM. AZ14133346 plays an important role in cancer research.
DC75865 TI17 ​​TI17​​ represents a novel class of targeted anticancer agents that specifically disrupt DNA damage repair mechanisms in malignant cells.
DC75816 Nisoxetine Nisoxetine acts as a highly selective and potent noradrenaline transporter (NET) antagonist, exhibiting a binding affinity (Kd) of 0.76 nM. In addition to its antidepressant properties, nisoxetine functions as a local anesthetic by inhibiting voltage-gated sodium channels. This dual pharmacological activity makes it a compound of interest for both neurological and pain management research.
DC75202 Fosaprepitant free acid Fosaprepitant, also known as MK0517, is an antiemetic drug, administered intravenously. It is a prodrug of aprepitant. Fosaprepitant was developed by Merck & Co. and was approved. It is a prodrug of Aprepitant. It aids in the prevention of acute and delayed nausea and vomiting associated with chemotherapy treatment. Fosaprepitant is a weak inhibitor of CYP3A4, and aprepitant, the active moiety, is a substrate, inhibitor, and inducer of CYP3A4
DC74684 ZH8667 ZH8667 is a trace amine-associated receptor 1 (TAAR1)–Gs agonist.
DC74646 EB-PSMA-617 EB-PSMA-617 is an Evans blue-modified prostate-specific membrane antigen (PSMA) 617 ligand for making 177Lu-EB-PSMA, which is potential useful for Metastatic Castration-Resistant Prostate Cancer.
DC74641 HC-258 HC-258 is a Covalent Acrylamide TEAD Inhibitor That Reduces Gene Expression and Cell Migration. HC-258 reduces the CTGF, CYR61, AXL, and NF2 transcript levels and inhibits the migration of MDA-MB-231 breast cancer cells. Co-crystallization with hTEAD2 confirmed that HC-258 binds within TEAD’s PA pocket, where it forms a covalent bond with its cysteine.
DC74639 Oligopeptide-10 Oligopeptide-10, also known as granactive oligopeptide-10, is a synthetic bio-active peptide composed of 15 amino acids. it can help manage acne-causing bacteria, both on its own and in conjunction with anti-acne superstar exfoliant salicylic acid.
DC74638 GLPG3667 GLPG3667 is an oral, reversible, and selective tyrosine kinase 2 (TYK2) inhibitor. It is being developed to treat inflammatory and auto-immune diseases. Biochemical assays showed that GLPG3667 displayed nanomolar potency on TYK2 with a selectivity over other JAK kinases >3-fold. In human PBMC, GLPG3667 showed comparable potency on the IFNα and IL-23 pathways (around 50 nM). Selectivity for TYK2 on the IFNα pathway was >14-fold and >19-fold toward the IL-2 and GM-CSF pathways in human PBMC and whole blood, respectively. Dermal ear inflammation in a mouse model of psoriasis driven by IL-23 was prevented by GLPG3667 with a minimal effective dose of 3 mg/kg given orally once daily. This effect was associated with a decrease in neutrophil infiltration and STAT3 phosphorylation at sites of inflammation. In healthy HV, GLPG3667 completely inhibited IFNα-induced STAT1 and STAT3 phosphorylation but did not impact IL-2- and GM-CSF-induced STAT5 phosphorylation.
X