DOIC

  Cat. No.:  DC71699  
Chemical Structure
1292821-06-7
For research use only. We do not sell to patients.
We match the best price and quality on market.
Email:order@dcchemicals.com  sales@dcchemicals.com
Tel:+86-021-58447131
We are official vendor of:
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 9
  • 8
  • 13
  • 6
  • 5
  • 4
  • 3
  • 2
  • 1
More than 5000 active chemicals with high quality for research!
Field of application
DOIC is a cationic lipid that can be used for RNA vaccines.
Cas No.: 1292821-06-7
Chemical Name: DOIC
SMILES: CCCCCCCC/C=C\CCCCCCCC(C1=[N+](C=CN1CCO)CCOC(CCCCCCC/C=C\CCCCCCCC)=O)=O.[Cl-]
Formula: C43H77ClN2O4
M.Wt: 721.54
Purity: >95%
Sotrage: 2 years -20°C Powder, 2 weeks 4°C in DMSO, 6 months -80°C in DMSO
Publication: [1]. WESSELHOEFT A, et, al. Circular rna compositions and methods. WO2021236855A1.
Description: DOIC is a cationic lipid that can be used for RNA vaccines.
References: [1]. WESSELHOEFT A, et, al. Circular rna compositions and methods. WO2021236855A1.
MSDS
COA
LOT NO. DOWNLOAD
2018-0101
Cat. No. Product name Field of application
DC72708 di-Pal-MTO di-Pal-MTO is a palm oil-based lipid produced by combining the anticancer drug mitoxantrone (MTO) with palmitoleic acid. When nanoparticles of mono-Pal-MTO and di-Pal-MTO are combined in a molar ratio of 1:1, they show effective siRNA cell delivery and enhance anticancer activity.
DC72701 mono-Pal-MTO mono-Pal-MTO is a palm oil-based lipid produced by combining the anticancer drug mitoxantrone (MTO) with palmitoleic acid. When nanoparticles of mono-Pal-MTO and di-Pal-MTO are combined in a molar ratio of 1:1, they show effective siRNA cell delivery and enhance anticancer activity.
DC71699 DOIC DOIC is a cationic lipid that can be used for RNA vaccines.
DC71417 YSK 05 YSK 05 is a pH-sensitive cationic lipid. YSK 05 improves the intracellular trafficking of non-viral vectors. YSK 05-MEND shows significantly good gene silencing activity and hemolytic activity. YSK 05 overcomes the suppression of endosomal escape by PEGylation. YSK 05 effectively enhances siRNA delivery both in vitro and in vivo.
DC70010 98N12-5 98N12-5 is an ionizable cationic lipid. It has been used in combination with other lipids in the generation of lipid nanoparticles (LNPs). LNPs containing 98N12-5 and encapsulating proprotein convertase subtilisin kexin type 9 (PCSK9) siRNA selectively accumulate in the liver and reduce total serum cholesterol levels in mice and rats and serum LDL levels in cynomolgus monkeys.
DC70008 CLinDMA CLinDMA, a cationic lipid, can cause inflammatory response. CLinDMA can be used for the synthesis LNP201. LNP201 is a liposome assembly for systemic delivery of siRNA.
DC49952 246C10 246C10 is a synthesized ionizable lipid. 246C10 can be formulated into lipid nanoparticles (LNPs) with dioleoylphosphatidylethanolamine (DOPE), cholesterol, and C16-PEG2000 ceramide (PEG-lipid) as well as mRNA. The lipid nanoparticle formulations can be used for mRNA delivery. To obtain iLNPs that could specifically target liver sinusoidal endothelial cells (LSECs), six different ionizable lipids (241C10 to 246C10) were synthesized by an epoxide ring-opening reaction with piperazine- or piperidine-containing amines. Biodistribution and gene regulation of various iLNPs were assessed in vivo, and the results showed that the 246C10 iLNPs (containing piperazine amine) had the highest luciferase expression in the liver. When further analyzing the 246C10 iLNPs transfection efficiency in different types of liver cells, it was found that tdTomato fluorescence was mainly concentrated in hepatocytes, not in LSECs. Figure 6f shows that 80% of hepatocytes are fluorescent, 40% of LSECs are fluorescent, and 20% of Kupffer cells are fluorescent. Due to the mannose receptor on LSECs, mannose-PEG lipid was introduced into 246C10 iLNPs to alter the distribution of iLNPs in different liver cells. As shown in Figure 6g, tdTomato fluorescence distribution was 15% of hepatocytes, 70% of LSECs, and 15% of Kupffer cells, significantly improved the ability of iLNPs to actively target LSECs. In contrast, this work indirectly shows that the iLNPs with piperazine head lipid are more able to deliver mRNA to the liver and translate the target protein than the iLNPs with piperidine head lipid. It is worth mentioning that the preparation buffer of 246C10 iLNPs could influence the encapsulation efficiency of mRNA. With the addition of sodium chloride in the citrate buffer, the encapsulation efficiency of CRISPR-Cas9 mRNA and sgRNA was increased. These iLNPs were able to treat hemophilia safely, without causing hepatotoxicity, the immune response induced by Cas9 and off-target editing.
DC49907 5A2-SC8 5A2-SC8 is a dendrimer for miRNA delivery to late-stage liver tumors with low hepatotoxicity. 5A2-SC8 shows potent EC50 < 0.02 mg/kg (siRNA against FVII (siFVII)) in dose-response experiments, and well tolerated in separate toxicity studies in chronically ill mice bearing MYC-driven tumors. 5A2-SC8 is a degradable lipid-like compound (ester-based dendrimer) for small RNAs delivery.5A2-SC8, was obtained by screening a large library of more than 1500 ester-based dendrimers containing ionizable amino groups, which have three tertiary amine heads and five lipid tails. Based on this library, the in vitro transfection efficiency of different formulations of 5A2-SC8 iLNPs was evaluated, discovering the optimal formulation (5A2-SC8, DOPE, cholesterol, PEG at a molar ratio of 15:15:30:3) of 5A2-SC8 iLNPs for delivering fumarylacetoacetate hydrolase (FAH) mRNA to liver.After the intravenous injection via tail, the model mice of hepatorenal tyrosinemia type I had strong FAH protein expression, which prevented body weight loss and increased the survival rate of hepatorenal tyrosinemia mice . In addition to introducing utility of 5A2-SC8 iLNPs for the therapeutic intervention, the 5A2-SC8 iLNPs containing DOTAP have been used to establish complex mouse models via intravenous injection, including in situ liverspecific cancer model and in situ lung-specific cancer model. Based on this iLNPs delivery system, 5A2-SC8 induced model construction method overcomes the time-consuming and costly disadvantages of traditional animal models establishing methods, including transgenesis and gene engineering in embryonic stem cells.
DC49889 503O13 503O13 is a degradable lipid-like compound for siRNA delivery.
DC49883 L343 L-343 is an ionizable cationic lipidoid and can be used to synthetic liposomes for systemic delivery of RNAi therapeutics, Pka: 6.34.L343, with its sterically hindered tert-butyl esters, exhibited slower elimination from plasma and higher and more persistent levels in liver compared with L319.
X