Home > RNA Delivery > Cationic/Ionizable Lipids

Cationic/Ionizable Lipids

As one of the major supplier in market, DC Chemicals provide more than 500 novel cationic ionizable lipids with wide range of diverse chemical structures for RNA delivery.

Cationic ionizable lipids play a major role in the LNP formulation and its ability to transfect target cells with its cargo. The ionizable lipids are used to complex negatively charged nucleic acid cargo. The mRNA-cationic lipid complex fuses with the cell membrane and is then delivered into the cytosol. To be able to play these roles efficiently, a cationic ionizable lipid must be engineered with a suitable apparent acid dissociation constant (pKa). The apparent pKa of a cationic ionizable lipid is the likely pKa at the LNP surface. Currently, the cationic ionizable lipids in FDA-approved therapeutics all have an apparent pKa between 6-7. This is crucial for the cationic ionizable lipid to maintain a neutral charge while in systemic circulation (pH above the pKa of the lipid, pH ~7.5), as well as its ability to become positively charged in the endosome (pH ~6.5) and facilitate membrane fusion and subsequent cytosolic release.
You can also try the following methods, and our professionals will serve you Customized Consultation
Cat. No. Product Name Field of Application Chemical Structure
DC65421 BP Lipid 301
DC65422 BP Lipid 302
DC65423 BP Lipid 304
DC65424 BP Lipid 303
DC65425 BP Lipid 400 BP Lipid 400 is a cationic lipid-like compound containing a polar alcohol head group, two amides, four hydrophobic tails, and a tertiary amine linker. The lipoid can be formulated into a lipid nanoparticle (LNP) to deliver anionic substrates in vitro and in vivo. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
DC65426 BP Lipid 700 BP Lipid 700 is a cationic lipid-like PEG compound containing a polar alcohol head group, four hydrophobic tails bound by esters, and a tertiary amine linker. The hydrophilic PEG linker increases the water solubility of the compound in aqueous media. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
DC65428 BP Lipid 800 BP Lipid 800 is a cationic lipid-like PEG compound containing a polar alcohol head group, four hydrophobic tails bound by esters, and a tertiary amine linker. The hydrophilic PEG linker increases the water solubility of the compound in aqueous media. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
DC65429 BP Lipid 802
DC65430 BP Lipid 801
DC65431 BP-28671 BP Lipid 227 is an amino ionizable lipid. The ethanolamine amino lipid head enhances encapsulation of mRNA. The lipid has primary esters at C5 position relative to the amine nitrogen. The primary lipid tail has 8 carbon tail. The lipid can be used for mRNA-based therapies which depends on the availability of a safe and efficient delivery vehicle. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
DC65432 BP Lipid 1000 BP Lipid 1000 is an amino ionizable lipid. The ethanolamine amino lipid head enhances encapsulation of mRNA. The lipid has primary esters at C6 position relative to the amine nitrogen. The primary lipid tail has 8 carbon tail. The lipid can be used for mRNA-based therapies which depends on the availability of a safe and efficient delivery vehicle. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
DC65433 BP Lipid 230 BP Lipid 229 is an amino ionizable lipid with an ethanolamine amino lipid head enhances encapsulation of mRNA. The lipid has primary esters at C8 position relative to the amine nitrogen. The lipid tails have 6 carbon tail. The lipid can be used for mRNA-based therapies which depends on the availability of a safe and efficient delivery vehicle. Reagent grade, for research purpose.
DC65434 SM102 Analog 1 Featured An analog of SM-102. The ethanolamine amino lipid head enhances encapsulation of mRNA. The lipid has primary esters at C7 position relative to the amine nitrogen. The primary lipid tail has 8 carbon tail. The lipid can be used for mRNA-based therapies which depends on the availability of a safe and efficient delivery vehicle.
DC65435 BP Lipid 306 BP Lipid 306 is an amino ionizable lipid with an butanolamine amino lipid head enhances encapsulation of mRNA. The lipid has primary esters at C8 position relative to the amine nitrogen. The lipid tails have 8 carbon tail. The lipid can be used for mRNA-based therapies which depends on the availability of a safe and efficient delivery vehicle. Reagent grade, for research purpose.
DC65437 LNP Lipid-2 Featured LNP Lipid-2 is a lipid product can be used to deliver agents.
DC65438 SM-102 Analog 2(Compound 8-8) Featured SM-102 Analog 2(Compound 8-8) is a lipid compound. SM-102 Analog 2(Compound 8-8) is involved in the synthesis of lipid nanoparticles compositions. SM-102 Analog 2(Compound 8-8) has potential applications in the transportation of biologically active substances.
DC65439 LNP Lipid-6 Featured LNP Lipid-6 (Compound Lipid 5) is an ionizable lipid (amino lipid). LNP Lipid-6 can be used to prepare lipid nanoparticles (LNP).
DC88888 Lipidoid XMaN6 Lipidoid XMaN6 is an ionizable lipid with universality was screened out from the adamantyl-based ionizable lipid series, which could functionally deliver highly diverse types of nucleic acids. Among them, the XMaN6 iLNPs were the best-delivering vectors. XMaN6 was used to deliver mRNA, siRNA, pDNA, and cyclic dinucleotide into different cells, including human primary hepatocytes, HEK293T, Huh7, HepG2, and U2OS cell, with nontoxicity after a single dose.The non-toxic XMaN6 lipidoid is highly versatile in entrapment and delivery of siRNA, mRNA, plasmid DNA, and a cyclic dinucleotide. XMaN6-based LNPs efficiently deliver: 1) siRNA into human primary hepatocytes and cell lines that are hard-to-transfect, 2) mRNA into mouse liver, 3) plasmid DNA, 4) 2′,3′-cGAMP into cells and activated the cGAS-STING pathway three orders of magnitude more efficiently than 2′,3′-cGAMP alone. To our knowledge, such universality in delivering different NA types has not been previously described and can accelerate translation of LNPs into the clinic.
DC85655 ssPalmE-P4C2 ssPalmE-P4C2 contained vitamin E (α-tocopherol) as a hydrophobic scaffold instead of oleic acid. ssPalmE-P4C2 was reported to have the ability to deliver siRNA to the liver. LNPssPalmE-P4C2 and LNPssPalmO-P4C2 showed a comparable knockdown efficiency (15.4 ± 8.7% and 19.2 ± 4.4%, respectively).
DC60471 Lipid 16 Lipid 16 is an ionizable lipid that can be used to synthesize lipid nanoparticles (LNP) for delivering mRNA and other payloads. Lipid 16 as a potent cell type-specific ionizable lipid for the CD11bhi macrophage population without an additional targeting moiety.
DC86805 Lipid 23 Featured Lipid 23 is an ionizable cationic amino lipid (pKa = 5.7) that has been used with other lipids in the formulation of lipid nanoparticles (LNPs). Intravenous administration of LNPs containing lipid 23 and encapsulating an mRNA reporter accumulate specifically in the mouse liver.
DC60475 CL4F8-6 CL4F8-6 is an ionizable cationic lipid (pKa = 6.14) that has been used in combination with other lipids in the formation of lipid nanoparticles (LNPs).1 Intravenous administration of LNPs containing CL4F8-6 and encapsulating an mRNA reporter accumulate specifically in the mouse liver. LNPs containing CL4F8-6 and encapsulating mRNA encoding the Cas9 nuclease (mCas9) and single-guide RNA (sgRNA) targeting Ttr (sgTtr), the gene encoding transthyretin, have been used to induce CRISPR-mediated gene knockdown in mice resulting in a reduction of serum levels of TTR.
DC60476 1O14 1O14 is an ionizable cationic lipid that has been used in combination with other lipids in the formation of lipid nanoparticles (LNPs).1 1O14-containing LNPs have been used for the delivery of IL-1β siRNA to induce gene silencing and hepatoprotective effects in a mouse model of acute liver injury induced by LPS and galactosamine (GalN).
DC60478 ALC-0366 Featured ALC-0366 is an ionizable cationic lipid (pKa = 6.25).It has been used in the generation of lipid nanoparticles (LNPs) for the delivery of mRNA in vivo.
DC89030 SM-102 IMPURITY 1 Featured
DC89031 SM-102 IMPURITY 2(SM-102 N-oxide) SM-102 N-oxide is potential impurity in commercial preparations of SM-102.
DC60482 DIM7S DIM7S is a sugar-alcohol-derived ionizable lipid with mannitol as the precursor. DIM7S LNP is 10-fold, 30-fold, 20-fold, 4-fold and 3-fold superior in mRNA delivery than Lipo 3K, Electro, ALC-0315, MC3 and SM-102, respectively. DIM7S LNP enables effective CD40 mRNA delivery into human peripheral blood monocyte-derived DCs without obvious cytotoxicity.
DC60483 LIS10W LIS10W is a sugar-alcohol-derived ionizable lipid with L-sorbitol as the precursor. CD40L-LIS10W in the CATCH (CD40L-LIS10W+CD40-BDMCs) treatment simultaneously induces ICD and CD40L expressions in tumoural tissues, which enables to activate both endogenous DCs and adoptively transferred CD40-BMDCs.
DC89101 C12-4 (C12-494,Lipid A-4) Featured C12-4 (C12-494,Lipid A-4) is a branched-chain ionizable cationic lipidoid that has been used in the formation of lipid nanoparticles (LNPs) for the delivery of mRNA. LNPs containing lipid A4 and encapsulating an mRNA reporter accumulate in the uterus, placenta, and ovaries, as well as to the spleen and liver, in pregnant mouse dams unlike LNPs containing the branched-chain ionizable cationic lipidoid C12-200, which primarily accumulate in the liver. Intravenous administration of LNPs containing lipid A4 and encapsulating mRNA encoding VEGF increase placental VEGFR1 levels and mean fetal blood vessel area without inducing liver damage in pregnant mouse dams.
DC60485 IAJD93 IAJD93(IAJD-93) is a pentaerythritol-based one-component ionizable amphiphilic Janus Dendrimer (IAJD), delivery systems for mRNA delivery.

Customized Consultation X

Your information is safe with us. * Required Fields.

Your name
Company
Email
Procuct Name
Cat. No.
Remark
Verification code
Please fill out the characters in the picture
X
>