Home > Products > Featured products

Featured products

You can also try the following methods, and our professionals will serve you Customized Consultation
Cat. No. Product Name Field of Application Chemical Structure
DC60790 DesMEM AZD4694 Featured DesMEM AZD4694(AZD4694 Precursor 1)is the precursor of [18F] AZD4694 for the synthesis of [18F] AZD4694, an amyloid-β imaging ligand with high affinity for amyloid-β plaques.
DC60791 Cholestify Precursor Featured Precursor of Cholestify,18F-Cholestify, which binds cytochrome P450 46A1, detected cholesterol breakdown in the mammalian brain. CYP46A1 converts cholesterol to 24-hydroxycholesterol, a form easily eliminated from the brain.
DC67281 BNT-51 Featured
DC67282 Merck Lipid X (L608, Merck-32) Featured L-608 is a novel ionizable amino lipid designed for formulating lipid nanoparticles (LNPs) to enable efficient subcutaneous (s.c.) delivery of mRNA therapeutics. Engineered to address inflammation associated with mRNA LNPs, L608 integrates seamlessly with steroid prodrugs, such as budesonide-C16 and budesonide-C18:1, to suppress local and systemic inflammatory responses while prolonging therapeutic protein expression. Preclinical studies demonstrate that L608 LNPs significantly reduce injection-site edema (>80% improvement) and lower systemic inflammatory markers (e.g., haptoglobin), while achieving 2–3× higher plasma AUC for proteins like hFGF21 compared to non-steroid LNPs.
DC67284 NOTA-NOC Featured
DC67285 DOTA-Octreotide Featured
DC67286 N-Desmethyl Galanthamine Featured N-Desmethyl Galanthamine is indeed a metabolite of Galanthamine, a well-known acetylcholinesterase (AChE) inhibitor. Galanthamine is a natural alkaloid originally derived from plants such as Galanthus (snowdrop) and is widely used in the treatment of Alzheimer's disease and other cognitive disorders due to its ability to enhance cholinergic neurotransmission.
DC67287 3-Methoxy-2',4',6',4-tetrahydroxychalcone Featured
DC67288 Oxypalmatine Featured Oxypalmatine is a bioactive alkaloid compound isolated from Phellodendron amurense, a plant commonly known as Amur cork tree. Phellodendron amurense is a traditional medicinal plant widely used in East Asian medicine, particularly in China, Japan, and Korea, for its anti-inflammatory, antimicrobial, and antipyretic properties. Oxypalmatine is one of the many alkaloids found in this plant, contributing to its pharmacological effects.
DC67289 Hydrangetin Featured Hydrangetin is a bioactive compound that has been identified as having antiplatelet aggregation properties, meaning it can help prevent blood clots by inhibiting the clumping together of platelets. This compound can be isolated from Zanthoxylum schinifolium, a plant commonly known as the Sichuan pepper or Korean pepper, which is used in traditional medicine and culinary practices in East Asia.
DC60792 10-Oxo-12(Z)-octadecenoic acid Featured 10-oxo-12(Z)-Octadecenoic acid is a metabolite of linoleic acid and an activator of transient receptor potential vanilloid 1 (TRPV1). It is formed from linoleic acid by conjugated linoleic acid dehydrogenase (CLA-DH) via a 10-hydroxy-12(Z)-octadecenoic acid intermediate and can also be produced from linoleic acid by gut microbiota.1 10-oxo-12(Z)-Octadecenoic acid (100 µM) selectively increases calcium levels in HEK293 cells expressing TRPV1 over those expressing TRPV2, TRPV3, TRPV4, and TRP melastatin 8 (TRPM8). It also induces inward currents in HEK293 cells expressing TRPV1, an effect that can be blocked by the TRPV1 antagonist capsazepine (Item No. 10007518). Dietary administration of 10-oxo-12(Z)-octadecenoic acid (0.1% w/w) reduces weight gain and adipose tissue weight and increases the expression of the gene encoding mitochondrial uncoupling protein 1 (Ucp1) in wild-type, but not Trpv1 knockout, mice fed a high-fat diet. It also decreases plasma glucose and triglyceride levels in diabetic KKAy mice fed a high-fat diet.
DC60793 LUMI-6 Featured The LUMI-6 lipid, autonomously designed via the LUMI-lab platform, is a brominated ionizable lipid optimized for mRNA delivery. Formulated at a molar ratio of 35:28:34.5:2 (LUMI-6:DOTAP:cholesterol:C14-PEG2000), LNPs exhibit uniform physicochemical properties, including a hydrodynamic diameter of ~80 nm, polydispersity index (PDI) <0.2, and robust mRNA encapsulation efficiency. In vitro, LUMI-6 LNPs demonstrated 1.8-fold higher transfection potency in human bronchial epithelial cells compared to its debrominated counterpart (LUMI-6D), with minimal cytotoxicity confirmed by CCK-8 assays. In vivo, pulmonary delivery of CRISPR-Cas9 mRNA via LUMI-6 LNPs achieved ​20.3% gene editing efficiency in murine lung epithelial cells, surpassing SM-102 (Moderna’s clinical benchmark) and demonstrating ​preferential tropism for lung epithelium over endothelial cells—critical for inhaled therapies targeting cystic fibrosis and surfactant disorders. The brominated tail enhances endosomal escape through optimized protonation dynamics, though explicit pKa values remain unmeasured. Synthesized via high-throughput combinatorial chemistry and refined through AI-driven active learning, LUMI-6 combines scalable production with organ-selective delivery, positioning it as a transformative platform for pulmonary nucleic acid therapeutics.
DC67293 D-Val-Gly-Arg-pNA Featured D-Val-Gly-Arg-p-nitroaniline (D-VGR-pNA)​ is a synthetic chromogenic peptide substrate specifically designed for assessing the enzymatic activity of tissue plasminogen activator (tPA), including its isoforms tPA I and tPA II. Upon cleavage by tPA, the release of p-nitroaniline (pNA) generates a measurable colorimetric signal, enabling precise quantification of amidolytic activity. This substrate is widely utilized in biochemical assays to study tPA’s role in fibrinolysis and to evaluate its enzymatic kinetics in both research and diagnostic applications.
DC60794 SABA1 Featured SABA1 is an antibacterial agent effective against Pseudomonas aeruginosa and Escherichia coli. It works by inhibiting biotin carboxylase (BC), an enzyme that catalyzes the first step of the acetyl-CoA carboxylase (ACC) reaction, a process essential for bacterial fatty acid synthesis. What makes SABA1 particularly notable is its atypical inhibition mechanism: it binds to the biotin binding site of BC in the presence of ADP. This unique mode of action distinguishes SABA1 as a promising candidate for the development of new antibiotics, offering a potential solution to the growing challenge of antimicrobial resistance.
DC60795 Boscalid Featured Boscalid is a broad-spectrum fungicide widely used in agriculture to protect crops from fungal diseases. Its bioactivity stems from its ability to inhibit fungal respiration by targeting succinate dehydrogenase (Complex II) in the mitochondrial electron transport chain. By binding to this enzyme, Boscalid blocks electron transfer, disrupting ATP synthesis and energy production in fungal cells, ultimately leading to their death. This mechanism makes Boscalid highly effective against a wide range of fungal pathogens, including Botrytis, Alternaria, Sclerotinia, and powdery mildew species.
DC67295 Lipid MK16 Featured MK16 is a specialized lipid designed to traverse the blood-brain barrier (BBB) for effective mRNA delivery. Its formulation, MK16 BLNP, leverages dual mechanisms involving caveolae and γ-secretase to facilitate BBB penetration, ensuring the targeted and efficient transport of functional mRNA to diverse brain cell types. Demonstrating excellent tolerability across a range of dosing regimens, MK16 BLNP represents a promising platform for brain-targeted therapeutic applications.
DC60796 HIFN​ Featured HIFN​ (2-fluoro-N-(2-(5-hydroxy-1H-indol-3-yl)ethyl)nicotinamide) is a synthetic small-molecule agonist of the tropomyosin-related kinase B (TrkB) receptor, designed to mimic brain-derived neurotrophic factor (BDNF) signaling. Structurally, HIFN replaces the six-membered lactam ring of its parent compound HIOC with a fluoropyridine moiety, rendering it achiral and configurationally stable. This modification enhances binding affinity and pharmacokinetic properties. HIFN activates TrkB by inducing receptor dimerization and phosphorylation, triggering downstream survival pathways (PI3K/Akt, MAPK/Erk). In vitro, HIFN outperforms HIOC in TrkB activation (10 nM concentration) in primary neurons and NIH-3T3-TrkB cells. In vivo, systemic administration of HIFN (30–40 mg/kg) mitigates blast-induced retinal ganglion cell (RGC) degeneration and preserves visual function (contrast sensitivity, acuity) in mice for up to 8 weeks post-injury. Its effects are TrkB-dependent, as co-treatment with the TrkB antagonist ANA-12 abolishes neuroprotection. HIFN exhibits a critical therapeutic window of ≤3 hours post-injury and dose-dependent efficacy, with no toxicity observed at 600 mg/kg (acute) or 40 mg/kg/day (40-day chronic). Safety assessments reveal no histopathological or biochemical abnormalities in vital organs. By combining potent TrkB activation, blood-retina barrier penetration, and a robust safety profile, HIFN emerges as a promising therapeutic candidate for traumatic optic neuropathy and broader CNS disorders involving TrkB dysregulation.
DC67296 Galnac GLS-15 Featured GLS-15 is a novel GalNAc-derived small molecule structure designed for siRNA delivery.
DC67297 SM6.1 (αvβ6 ligand) Featured SM-6.1 is a small molecule delivery vehicle developed by Arrowhead, targeting αvβ6, which selectively delivers therapeutic siRNA to lung epithelial cells and mediates durable gene silencing post-inhalation.
DC67298 Lipid 5D8 Featured Lipid 5D8 is a novel biodegradable ionizable lipid (IL) developed through a combinatorial chemistry strategy to overcome the limitations of conventional lipid nanoparticles (LNPs) in mRNA delivery. Synthesized via a one-step, solvent-free Michael addition reaction between amine and thiol monomers, 5D8 features asymmetric lipid tails and a biodegradable ester backbone, ensuring both structural versatility and reduced toxicity. In preclinical studies, 5D8-based LNPs demonstrated exceptional liver-targeting efficiency and mRNA delivery performance. A single intravenous dose (1 mg/kg) achieved 61% CRISPR-Cas9-mediated editing of the TTR gene in mice, reducing serum TTR protein by 90%, outperforming benchmark lipids like C12-200 (51% editing). Moreover, 5D8 enabled efficient delivery of base editors (ABE8.8 and CBE4max), achieving 42% PCSK9 editing (74% serum protein reduction) and correcting hereditary tyrosinemia in mice, significantly extending survival. Beyond gene editing, 5D8 LNPs effectively delivered siRNA (complete serum TTR clearance at 0.05 mg/kg) and enhanced hepatocyte targeting by enriching apolipoprotein E on particle surfaces. Crucially, 5D8 exhibited superior biocompatibility with no hepatotoxicity (normal ALT/AST levels), contrasting traditional LNPs. Its rapid biodegradability and "plug-and-play" design make 5D8 a versatile platform for mRNA therapeutics, holding broad potential for treating genetic disorders, cardiovascular diseases, and beyond. This innovation represents a critical advancement toward safer, high-efficiency clinical translation of gene-editing therapies.L
DC67299 N4-Acetylcytidine triphosphate sodium Featured N4-Acetylcytidine triphosphate sodium serves as an efficient substrate in T7 Polymerase-driven in vitro transcription reactions, demonstrating its ability to be successfully incorporated into various templates. This modified nucleotide offers a unique advantage in expanding the scope of RNA synthesis, enabling the production of acetylated RNA molecules with potential applications in research and therapeutic development. Its compatibility with T7 Polymerase highlights its utility in generating tailored RNA constructs, providing researchers with a versatile tool for exploring RNA modifications and their functional implications.
DC67300 FBnG Featured FBnG is a key component of the non-ribosomal peptide synthetase/polyketide synthase (NRPS/PKS) machinery, playing a crucial role in the biosynthesis of fabrubactin (FBN). This versatile molecule can be utilized in the synthesis of AUTAC4, specifically as part of the compound FBnG-(Cys-acetamide)-CH2-PEG3-CH2-CH2-CH2-NH2 (HY-150408). By leveraging its integration into this synthetic pathway, FBnG serves as a valuable building block for the development of AUTAC4, highlighting its potential in advancing research and therapeutic applications related to targeted protein degradation and related biological processes.
DC67301 3-sucCA Featured 3-Succinylated cholic acid (3-sucCA) is a microbially derived bile acid that plays a significant role in gut health and metabolic regulation. As a lumen-restricted metabolite, 3-sucCA has been shown to mitigate the progression of metabolic-associated fatty liver disease (MAFLD) to metabolic-associated steatohepatitis (MASH) in mouse models. Its protective effects are primarily attributed to its ability to reshape the gut microbiota, particularly by enhancing the growth of Akkermansia muciniphila, a beneficial bacterium associated with improved metabolic health. Notably, patients with biopsy-confirmed MAFLD exhibit reduced levels of 3-sucCA, underscoring its potential as a biomarker and therapeutic target for managing metabolic liver diseases. This unique metabolite highlights the intricate interplay between gut microbiota and liver health, offering promising avenues for intervention.
DC67302 KAT modulator-1 Featured KAT modulator-1 (Compound 3) is a novel modulator of lysine acetyltransferases (KATs) with a unique mechanism of action. It specifically interacts with the full-length p300 protein but does not engage with its isolated catalytic domain, highlighting its distinctive binding properties. This compound serves as a valuable tool for epigenetics research, enabling the exploration of p300's role in chromatin remodeling, gene regulation, and other epigenetic processes. Its selective interaction with full-length p300 offers insights into the structural and functional complexities of KATs, paving the way for the development of targeted epigenetic therapies.
DC67303 I-152 Featured I-152 is a novel conjugate composed of N-acetyl-cysteine (NAC) and cysteamine (MEA), designed to harness the synergistic effects of these two bioactive compounds. It demonstrates the ability to activate key cellular signaling pathways, including NRF2 and ATF4, which are involved in oxidative stress response and cellular homeostasis. Additionally, I-152 exhibits potent anti-proliferative properties, making it a promising candidate for research in conditions characterized by uncontrolled cell growth, such as cancer. This unique combination of NAC and MEA in I-152 offers a multifaceted approach to modulating cellular pathways and addressing pathological processes.
DC67304 JMV6944 Featured JMV6944 is a potent agonist of the pregnane X receptor (PXR), demonstrating its ability to competitively inhibit the binding of the human PXR ligand-binding domain (LBD) with an IC50 value of 680 nM. This compound effectively induces the expression of CYP3A4 mRNA in freshly isolated primary human hepatocyte cultures, highlighting its role in modulating drug metabolism and detoxification pathways. JMV6944 serves as a valuable tool for investigating PXR-mediated transcriptional regulation and its implications in xenobiotic metabolism, liver function, and therapeutic interventions. Its dual functionality as a PXR agonist and CYP3A4 inducer underscores its potential in both research and drug development.
DC67305 BMS-1166-N-piperidine-COOH Featured BMS-1166-N-piperidine-COOH, a derivative of the potent PD-1/PD-L1 interaction inhibitor BMS-1166, serves as a key component in the design of PROTAC PD-1/PD-L1 degrader-1 (HY-131183). By binding to an E3 ligase ligand via a linker, this moiety facilitates the targeted degradation of PD-1/PD-L1, offering a novel approach to modulate immune checkpoint pathways. BMS-1166 itself is a highly effective inhibitor of the PD-1/PD-L1 interaction, with an IC50 of 1.4 nM, and it counteracts the immune-suppressive effects of the PD-1/PD-L1 checkpoint on T cell activation. This innovative strategy combines the inhibitory potency of BMS-1166 with the degradation capability of PROTAC technology, providing a promising tool for advancing cancer immunotherapy and immune-related research.
DC60798 6-[1-(Hexyloxy)ethoxy]hexanal(MK16 tail) Featured 6-[1-(Hexyloxy)ethoxy]hexanal is the tail fragement for MK16.MK16 is a novel blood-brain barrier (BBB)-crossing lipid nanoparticle (BLNP) platform developed for efficient mRNA delivery to the central nervous system (CNS).
DC67306 1-Propanethiol, 3-(dimethylamino)-, 4-methylbenzenesulfonate (1:1) Featured
DC67307 1-Piperazineethanamine, N-(phenylmethyl)- Featured

Customized Consultation X

Your information is safe with us. * Required Fields.

Your name
Company
Email
Procuct Name
Cat. No.
Remark
Verification code
Please fill out the characters in the picture
X