Home > RNA Delivery > Cationic/Ionizable Lipids

Cationic/Ionizable Lipids

As one of the major supplier in market, DC Chemicals provide more than 500 novel cationic ionizable lipids with wide range of diverse chemical structures for RNA delivery.

Cationic ionizable lipids play a major role in the LNP formulation and its ability to transfect target cells with its cargo. The ionizable lipids are used to complex negatively charged nucleic acid cargo. The mRNA-cationic lipid complex fuses with the cell membrane and is then delivered into the cytosol. To be able to play these roles efficiently, a cationic ionizable lipid must be engineered with a suitable apparent acid dissociation constant (pKa). The apparent pKa of a cationic ionizable lipid is the likely pKa at the LNP surface. Currently, the cationic ionizable lipids in FDA-approved therapeutics all have an apparent pKa between 6-7. This is crucial for the cationic ionizable lipid to maintain a neutral charge while in systemic circulation (pH above the pKa of the lipid, pH ~7.5), as well as its ability to become positively charged in the endosome (pH ~6.5) and facilitate membrane fusion and subsequent cytosolic release.
You can also try the following methods, and our professionals will serve you Customized Consultation
Cat. No. Product Name Field of Application Chemical Structure
DC84101 Arcturus lipid 2 analog((Lipid 2,2 (9,9) 4C CH3)) Featured Arcturus lipid 2 analog (Lipid 2,2 (9,9) 4C CH3) is an analog of Arcturus lipid 2((Lipid 2,2 (8,8) 4C CH3)) with chain adjusted to C9 instead of C8.
DC84110 R-DOTAP(DOTAP R-isomer ) 1,2-Dioleoyl-3(R)-trimethylammoniumpropane (R-DOTAP) is a cationic lipid and the more immunologically active isomer of DOTAP.Lipoplexes containing R-DOTAP and encapsulating siRNA targeting the gene encoding aromatase, CYP19A1, decrease aromatase activity in MCF-7 breast cancer cells.1 Vaccination with a peptide epitope from human papillomavirus (HPV) 16 protein E7 in R-DOTAP-containing liposomes induces IFN-γ production by CD8+ T cells and tumor-infiltrating lymphocytes (TILs) and decreases tumor size in a murine cervical cancer model.2 Subcutaneous immunization with recombinant influenza B hemagglutinin using R-DOTAP as an adjuvant increases IL-2 and IFN-γ production in CD4+ T cells isolated from mouse draining lymph nodes and spleen.
DC65001 4A3-Cit Featured 4A3-Cit is an ionizable lipid used for the generation of lipid nanoparticles (LNPs). To investigate the role of unsaturated lipid tails in iLNPs, the nucleophilic amines were added to ester-based linkers, followed by Michael’s addition to the thiols to construct a library of 91 amino ionizable lipids. Such ionizable lipids were composed of an ionizable tertiary amine core, an ester-based degradable linker, and an alkylthiol tail periphery. Through in vitro and in vivo screening, the iLNPs with 4A3 core and citronellolbased (Cit) periphery can significantly increase endosome escape and delivery efficiency of mRNA, leading to 18-fold increase in protein expression compared with iLNPs without Cit periphery. Furthermore, the delivery efficiency of mRNA may be associated with the location/configuration of the unsaturated bond(s) in lipids. Although lipids with Cit periphery showed excellent membrane fusion ability to facilitate endosome escape, the fusion mechanism needs to be further clarified.
DC65004 G0-C14 G0-C14 is a cationic lipid-like compound alkyl-modified polyamidoamine (PAMAM) dendrimer. G0-C14 involves in the preparation of a series of macrophage-targeted nanoparticles (NPs). NPs can be used for drug and vaccine delivery[1][2].
DC85555 YK009 Featured YK-009 is a novel ionizable lipid for mRNA delivery. Comparisons of YK009-LNP-mRNA and commercial MC3-LNP-mRNA showed that YK009-LNP-mRNA vaccines had good biodistribution patterns, favorable tissue clearance, and high delivery efficiency. Furthermore, our study proved that YK009-LNP-Omicron mRNA could trigger a robust immune response and immune protection against the SARS-CoV-2 Omicron variant.
DC85600 Lipidoid S14 Lipidoid S14 is a novel lipidoid for siRNA delivery.Lipidoid-polymer hybrid nanoparticle (FS14-NP) can efficiently deliver siRNA against IL-1β (siIL-1β) to macrophages and effectively suppress the pathogenesis of experimental arthritis induced by collagen antibody (CAIA mice). FS14-NP/siIL-1β achieved approximately 70% and 90% gene-silencing efficiency in the RAW 264.7 cell line and intraperitoneal macrophages, respectively. Intravenous administration of FS14-NP/siRNA led to rapid accumulation of siRNA in macrophages within the arthritic joints. Furthermore, FS14-NP/siIL-1β treatment lowered the expression of pro-inflammatory cytokines in arthritic joints and dramatically attenuated ankle swelling, bone erosion, and cartilage destruction.
DC86601 Lipid 8 Featured Lipid 8 iLNPs were used to deliver CRISPR-Cas9 mRNA and sgRNA which targeted to the PLK1 gene. The safety and excellent intracerebral diffusion performance of lipid 8 iLNPs ensured that the survival of murine glioblastoma multiforme (GBM) mice was extended. The median survival was extended by approximately 50% and the overall survival was increased by 30%. The treatment of metastatic adenocarcinoma was executed by the EGFRtargeted lipid 8 iLNPs. These iLNPs possessed the ability of tumor targeting, which could increase the accumulation of CRISPR-Cas9 mRNA and sgRNA within the tumor cells. After a single intraperitoneal administration, 80% PLK1 gene was edited and the overall survival of mice with high-grade ovarian cancer malignant ascites was enhanced by 80% . These results demonstrate the clinical potential of CRISPR-Cas9 gene editing system can be delivered by iLNPs for treating tumors, and provide new ideas for tumor gene therapy.
DC65178 AL-A12 AL-A12 is an ionizable cationic amino lipid that has been used in the formation of lipid nanoparticles (LNPs).1 LNPs containing AL-A12 and encapsulating minicircle DNA that encodes for GFP have been used to induce GFP expression in Huh7 cells.
DC65179 Dlin-MC4-DMA Featured D-Lin-MC4-DMA(MC4) is a cationic lipid that has been synthesized for Lipid nanoparticles (LNPs) to deliver the siRNA.
DC65180 DLin-MC2-DMA Featured D-Lin-MC2-DMA(MC2) is a cationic lipid that has been synthesized for Lipid nanoparticles (LNPs) to deliver the siRNA.
DC60455 RM133-3 RM133-3 is an ionizable lipid for potent functional mRNA delivery in vivo. The LPN formulation RM133-3-21, is found to be roughly 4.5 times more potent than DLin-MC3-DMA.
DC86120 LIPID 10 Featured Lipid 10 is a novel ionizable cationic lipid be used for delivery of therapeutic RNA to the Bone Marrow in Multiple Myeloma Using CD38-Targeted with Lipid 10-LNP.
DC65327 306-N16B (Disulpax) Featured 306-N16B is a lipidnanoparticle, and allows systemic codelivery of Cas9 mRNA and sgRNA. 306-N16B can transport mRNA to the pulmonaryendothelial cell. 306-N16B can be used for research of genome editing-based therapies. Based on the same lipid libraries with 306-O12B, the researchers also found that N-series ionizable lipids were able to selectively deliver mRNA to the lungs of mice. Compared with the liver-targeted O-series ionizable lipids which contained ester bond in lipid tail found in previous work, such as 306-O12B, the N-series ionizable lipids with the lipid tail containing amide bond prefer to deliver mRNA to the lung. As a N-series ionizable lipid, the chemical structure of the 306-N16B is shown in Figure 4a,b. The difference of organ targeting may be due to their adsorption of different protein coronas during blood circulation caused by their different structures mentioned earlier.It has shown that the second major protein of the protein corona adsorbed by liver-targeting 306-O12B iLNPs was apolipoprotein E (ApoE), while the three dominant proteins in the protein corona adsorbed by lung-targeting 306-N16B iLNPs were serum albumin, fibrinogen beta chain, and fibrinogen gamma chain. However, the 306-N16B iLNPs showed less organ selectivity when systematically codelivered Cas9 mRNA and sgRNA in vivo, which could simultaneously activate tdTomato expression in the liver and lung of Ai14 mice, whereas single mRNA delivery could almost exclusively deliver mRNA to the lungs. This surprising phenomenon requires further investigation. Both the change of iLNPs charge and the change of lipids functional group can influence the distribution of iLNPs in vivo due to the altering of protein corona composition. Therefore, it is possible to control the organ targeting of iLNPs by controlling the composition of the outer protein corona of iLNPs.
DC65328 AA-T3A-C12 AA-T3A-C12 is an anisamide ligand-tethered lipidoid (AA-lipidoid) with high potency and selectivity to deliver RNA payloads to activated fibroblasts. HSP47 siRNA (siHSP47)-loaded AA-T3A-C12 LNP achieves ~65% knockdown and dramatically reduces liver fibrosis, which significantly outperforms the benchmark DLin-MC3-DMA (MC3) LNP.
DC65329 ALC-0315 analogue-2 Featured ALC-0315 analogue-2 is an analogue of ALC-0315. ALC-0315 is an ionisable aminolipid that is responsible for mRNA compaction and aids mRNA cellular delivery and its cytoplasmic release through suspected endosomal destabilization. ALC-0315 can be used to form lipid nanoparticle (LNP) delivery vehicles. Lipid-Nanoparticles have been used in the research of mRNA COVID-19 vaccine.
DC65332 Lipid 6 Lipid 6 is an ionizable amino lipid used for the generation of Lipid nanoparticles .
DC65333 A2-Iso5-4DC19 Featured A2-Iso5-4DC19 is a lipidoid compound. A2-Iso5-4DC19 is an effective carrier for the delivery of an agent such as a polynucleotide to a cell.
DC65334 Lipid 15 Featured Lipid 15 is an ionizable amino lipid used for the generation of Lipid nanoparticles .
DC65335 LNP Lipid-5 Featured LNP Lipid-5 (Compound Lipid 2) is an ionizable lipid (amino lipid). LNP Lipid-5 can be used to prepare lipid nanoparticles .
DC60465 Lipid R6 R6 is a new ionizable lipid driven from AI-Guided Ionizable Lipid Engineering (AGILE) platform for mRNA delivery. R6 LNPs exhibits a 5-fold increase in transfection potency in RAW 264.7 and shows its potential to be utilized for the development of non-viral mRNA delivery vectors for immune cells.
DC60466 H9 H9 is a new ionizable lipid driven from AI-Guided Ionizable Lipid Engineering (AGILE) platform for mRNA delivery. H9 LNPs shows superior mRNA transfection potency compared to LNPs containing (D-Lin-MC3-DMA).
DC60467 C12-TLRa C12-TLRa is an adjuvant lipidoid. C12-TLRa substitution can enhance the immunogenicity of clinically relevant SARS-CoV-2 mRNA-LNP vaccines, which holds translational potential.
DC65349 ALC-0315 analgous-3 Featured ALC-0315 analgous-3 is an butanolamine ionizable lipid with both ester bonds located adjacent to C8 relative to the amine head. The introduction of ester linkages can improve the clearance of the lipid in the liver. This compound is analgous to ALC-0315.
DC65350 BP Lipid 101 BP Lipid 101 is an amino ionizable lipid analogous to SM-102. The ethanolamine amino lipid head enhances encapsulation of mRNA. The lipid has primary esters at C6 position relative to the amine nitrogen. The primary lipid tail has 7 carbon tail. The lipid can be used for mRNA-based therapies which depends on the availability of a safe and efficient delivery vehicle. Reagent grade, for research purpose.
DC65351 BP Lipid 102 BP Lipid 102 is an ionizable lipid used to prepare lipid nanoparitlcels (LNPs). The lipid has ethanolamine as a lipid head group which enhances the mRNA encapsulation and provides exceptional physiochemical properties. Both esters of the lipid are at the C6 position relative to the amine. The lipid can be used for mRNA delivery. Reagent grade, for research purpose.
DC65352 BP Lipid 103 BP Lipid 103 is an amine ionizable lipid analogous to SM-102. The ethanolamine head improves encapsulation of mRNA. The lipid has both esters at C6 position relative to the amine nitrogen. Ester linkages in the lipid tails are introduced into the structure to improve tissue clearance. The lipid can be used for mRNA-based therapies which depends on the availability of a safe and efficient delivery vehicle. Reagent grade, for research only.
DC65353 BP Lipid 104 BP Lipid 104 is an ionizable lipid with ethanolamine head to enhance mRNA encapsulation. Ester linkages at C7 position relative to amine are introduced into the structure to improve tissue clearance. The lipid can be used for mRNA-based therapies which depends on the availability of a safe and efficient delivery vehicle. Reagent grade, for research purpose.
DC65354 BP Lipid 105 BP Lipid 105 is an ethanolamine ionizable lipid with 9 carbon of primary-ester lipid tail. The ethanolamine head helps with mRNA encapsulation. The ester bonds, located at C7 relative to amine nitrogen, improve tissue clearance. Reagent grade, for research purpose.
DC65355 BP Lipid 106 BP Lipid 106 is an amino ionizable lipid with ester bonds located at C7 relative to nitrogen. The ethanolamine head can effectively enhance mRNA encapsulation while ester bonds improve tissue clearance. The primary lipid tail contains 11 carbons. The ionizable lipid can be used for mRNA delivery due to its excellent physiochemical properties. Reagent grade, for research purpose.
DC65356 BP Lipid 107 BP Lipid 107 is an ionizable amino lipid with both ester linkages located at C8 position relative to nitrogen amine. There is 7 carbons chain on the primary ester lipid tail. The secondary ester is introduced to improve protein expression. Reagent grade, for research purpose.

Customized Consultation X

Your information is safe with us. * Required Fields.

Your name
Company
Email
Procuct Name
Cat. No.
Remark
Verification code
Please fill out the characters in the picture
X
>