Home > RNA Delivery > Cationic/Ionizable Lipids

Cationic/Ionizable Lipids

In the past five years, DC Chemicals has focused on research and development in the RNA delivery field, successfully developing over 500 cationic lipid structures and maintaining an inventory of over 200 cationic lipids. We collaborate with leading gene delivery companies and research institutions worldwide, and our products and services have received widespread acclaim.
DC Chemicals has accumulated substantial experience in the synthesis of lipids, particularly for highly complex lipid molecules. Our unique chemical synthesis and purification processes often circumvent patented and literature-reported routes, allowing us to design new synthetic routes that yield lipid molecules with higher purity than those reported in literature and patents. Our representative molecules, such as LP-01, SM-102, ALC-0315, and DLIN-MC3-DMA, have purities exceeding 98% as tested by CAD-HPLC, placing them among the top purity products available.We have the capability to scale production from grams to kilograms.


Cationic ionizable lipids play a major role in the LNP formulation and its ability to transfect target cells with its cargo. The ionizable lipids are used to complex negatively charged nucleic acid cargo. The mRNA-cationic lipid complex fuses with the cell membrane and is then delivered into the cytosol. To be able to play these roles efficiently, a cationic ionizable lipid must be engineered with a suitable apparent acid dissociation constant (pKa). The apparent pKa of a cationic ionizable lipid is the likely pKa at the LNP surface. Currently, the cationic ionizable lipids in FDA-approved therapeutics all have an apparent pKa between 6-7. This is crucial for the cationic ionizable lipid to maintain a neutral charge while in systemic circulation (pH above the pKa of the lipid, pH ~7.5), as well as its ability to become positively charged in the endosome (pH ~6.5) and facilitate membrane fusion and subsequent cytosolic release.
You can also try the following methods, and our professionals will serve you Customized Consultation
Cat. No. Product Name Field of Application Chemical Structure
DC72701 mono-Pal-MTO mono-Pal-MTO is a palm oil-based lipid produced by combining the anticancer drug mitoxantrone (MTO) with palmitoleic acid. When nanoparticles of mono-Pal-MTO and di-Pal-MTO are combined in a molar ratio of 1:1, they show effective siRNA cell delivery and enhance anticancer activity.
DC72708 di-Pal-MTO di-Pal-MTO is a palm oil-based lipid produced by combining the anticancer drug mitoxantrone (MTO) with palmitoleic acid. When nanoparticles of mono-Pal-MTO and di-Pal-MTO are combined in a molar ratio of 1:1, they show effective siRNA cell delivery and enhance anticancer activity.
DC83220 BP Lipid 218 Featured BP Lipid 218 is an ionizable amine lipid with two identical ester tails adjacent to C6 position relative to amine. The head of lipid is propanolamine which can effectively encapsulate mRNA used in gene therapies which depends on the availability of a safe and efficient delivery vehicle.
DC60405 C13-112-tri-tail C13-112-tri-tail is a synthetic ionizable lipid molecule designed for use in lipid nanoparticles (LNPs) for the delivery of anionic substrates, such as nucleic acids (e.g., siRNA, mRNA) and proteins.
DC60406 C13-113-tri-tail C13-113-tri tail is an ionizable lipid molecule containing a polar amino alcohol head group, three hydrophobic carbon-13 tails, and a tertiary amine linker. The lipoid can be formulated into a lipid nanoparticle (LNP) to deliver anionic substrates in vitro and in vivo. This includes siRNA to induce gene silencing in a sequence-specific manner, CAS9 mRNA, and cytotoxic proteins. Reagent grade, for research purpose. Please contact us for GMP-grade inquiries.
DC60407 C13-112-tetra-tail C13-112-tetra-tail is an advanced ionizable lipid molecule designed for use in lipid nanoparticles (LNPs) to deliver anionic substrates, such as nucleic acids (e.g., siRNA, mRNA) or proteins, both in vitro and in vivo.
DC60408 C13-113-tetra-tail C13-113-tetra-tail is an ionizable lipid molecule designed for use in lipid nanoparticles (LNPs) for the delivery of therapeutic payloads, such as nucleic acids (e.g., siRNA, mRNA) or proteins.
DC60409 14:0 TAP TAP (14:0) A cationic lipids that can be used for drug delivery, gene transfection and vaccine delivery. TAP has been proven to be efficient for in vitro and in vivo transfection applications, which makes it one of the most widely used cationic lipids for gene transfection applications. Reagent grade, for research use only.
DC60418 16:0 TAP 16:0 TAP is a cationic derivative of trimethylammonium linked with two 16-carbon fatty acid tails. 16:0 TAP is a cationic liposome-forming compound that may be used for transfection of DNA, RNA, and other negatively charged molecules into eukaryotic cells. Reagent grade, for research use only.
DC60421 DC-6-14 Featured DC-6-14 is a cationic lipid that can be used for drug delivery, gene transfection and vaccine delivery. DC-6-14 may be used for research into in vitro and in vivo nucleic acid and protein delivery. Reagent grade, for research use only.
DC60429 16:0 DAP 16:0 DAP, 1,2-dipalmitoyl-3-dimethylammonium-propane, is a cationic lipid that can be used to formulate lipid nanoparticles (LNPs). 18:0 DAP also serves as a pH-sensitive transfection reagent. Reagent grade, for research use only.
DC60432 DORI DORI, N-(2-hydroxyethyl)-N,N-dimethyl-2,3-bis(oleoyloxy)propan-1-aminium bromide, is an ionizable cationic lipid with lower cytotoxicity and high transfection efficiency. Reagent grade, for research use only.
DC60433 DOBAQ Featured DOBAQ, N-(4-carboxybenzyl)-N,N-dimethyl-2,3-bis(oleoyloxy)propan-1-aminium, is a cationic lipids with a quaternary amine and unsaturated hydrocarbon chains. DOBAQ also serves as a pH-sensitive transfection reagent. Reagent grade, for research use only.
DC84101 Arcturus lipid 2 analog (ATX0114analog) Featured Arcturus lipid 2 analog (ATX0114analog, Lipid 2,2 (9,9) 4C CH3) is an analog of Arcturus lipid 2((Lipid 2,2 (8,8) 4C CH3)) with chain adjusted to C9 instead of C8.
DC84110 R-DOTAP(DOTAP R-isomer )
DC65001 4A3-Cit Featured 4A3-Cit is an ionizable lipid used for the generation of lipid nanoparticles (LNPs). To investigate the role of unsaturated lipid tails in iLNPs, the nucleophilic amines were added to ester-based linkers, followed by Michael’s addition to the thiols to construct a library of 91 amino ionizable lipids. Such ionizable lipids were composed of an ionizable tertiary amine core, an ester-based degradable linker, and an alkylthiol tail periphery. Through in vitro and in vivo screening, the iLNPs with 4A3 core and citronellolbased (Cit) periphery can significantly increase endosome escape and delivery efficiency of mRNA, leading to 18-fold increase in protein expression compared with iLNPs without Cit periphery. Furthermore, the delivery efficiency of mRNA may be associated with the location/configuration of the unsaturated bond(s) in lipids. Although lipids with Cit periphery showed excellent membrane fusion ability to facilitate endosome escape, the fusion mechanism needs to be further clarified.
DC65004 G0-C14
DC85555 YK009 Featured YK-009 is a novel ionizable lipid for mRNA delivery. Comparisons of YK009-LNP-mRNA and commercial MC3-LNP-mRNA showed that YK009-LNP-mRNA vaccines had good biodistribution patterns, favorable tissue clearance, and high delivery efficiency. Furthermore, our study proved that YK009-LNP-Omicron mRNA could trigger a robust immune response and immune protection against the SARS-CoV-2 Omicron variant.
DC85600 Lipidoid S14
DC86601 Lipid 8 Featured Lipid 8 iLNPs were used to deliver CRISPR-Cas9 mRNA and sgRNA which targeted to the PLK1 gene. The safety and excellent intracerebral diffusion performance of lipid 8 iLNPs ensured that the survival of murine glioblastoma multiforme (GBM) mice was extended. The median survival was extended by approximately 50% and the overall survival was increased by 30%. The treatment of metastatic adenocarcinoma was executed by the EGFRtargeted lipid 8 iLNPs. These iLNPs possessed the ability of tumor targeting, which could increase the accumulation of CRISPR-Cas9 mRNA and sgRNA within the tumor cells. After a single intraperitoneal administration, 80% PLK1 gene was edited and the overall survival of mice with high-grade ovarian cancer malignant ascites was enhanced by 80% . These results demonstrate the clinical potential of CRISPR-Cas9 gene editing system can be delivered by iLNPs for treating tumors, and provide new ideas for tumor gene therapy.
DC65178 AL-A12
DC65179 Dlin-MC4-DMA Featured D-Lin-MC4-DMA(MC4) is a cationic lipid that has been synthesized for Lipid nanoparticles (LNPs) to deliver the siRNA.
DC65180 DLin-MC2-DMA Featured D-Lin-MC2-DMA(MC2) is a cationic lipid that has been synthesized for Lipid nanoparticles (LNPs) to deliver the siRNA.
DC60455 RM133-3
DC86120 LIPID 10 Featured Lipid 10 is a novel ionizable cationic lipid be used for delivery of therapeutic RNA to the Bone Marrow in Multiple Myeloma Using CD38-Targeted with Lipid 10-LNP.
DC65327 306-N16B (Disulpax) Featured 306-N16B is a lipidnanoparticle, and allows systemic codelivery of Cas9 mRNA and sgRNA. 306-N16B can transport mRNA to the pulmonaryendothelial cell. 306-N16B can be used for research of genome editing-based therapies. Based on the same lipid libraries with 306-O12B, the researchers also found that N-series ionizable lipids were able to selectively deliver mRNA to the lungs of mice. Compared with the liver-targeted O-series ionizable lipids which contained ester bond in lipid tail found in previous work, such as 306-O12B, the N-series ionizable lipids with the lipid tail containing amide bond prefer to deliver mRNA to the lung. As a N-series ionizable lipid, the chemical structure of the 306-N16B is shown in Figure 4a,b. The difference of organ targeting may be due to their adsorption of different protein coronas during blood circulation caused by their different structures mentioned earlier.It has shown that the second major protein of the protein corona adsorbed by liver-targeting 306-O12B iLNPs was apolipoprotein E (ApoE), while the three dominant proteins in the protein corona adsorbed by lung-targeting 306-N16B iLNPs were serum albumin, fibrinogen beta chain, and fibrinogen gamma chain. However, the 306-N16B iLNPs showed less organ selectivity when systematically codelivered Cas9 mRNA and sgRNA in vivo, which could simultaneously activate tdTomato expression in the liver and lung of Ai14 mice, whereas single mRNA delivery could almost exclusively deliver mRNA to the lungs. This surprising phenomenon requires further investigation. Both the change of iLNPs charge and the change of lipids functional group can influence the distribution of iLNPs in vivo due to the altering of protein corona composition. Therefore, it is possible to control the organ targeting of iLNPs by controlling the composition of the outer protein corona of iLNPs.
DC65328 AA-T3A-C12
DC65329 ALC-0315 analogue-2 Featured ALC-0315 analogue-2 is an analogue of ALC-0315. ALC-0315 is an ionisable aminolipid that is responsible for mRNA compaction and aids mRNA cellular delivery and its cytoplasmic release through suspected endosomal destabilization. ALC-0315 can be used to form lipid nanoparticle (LNP) delivery vehicles. Lipid-Nanoparticles have been used in the research of mRNA COVID-19 vaccine.
DC65330 Lipid 1 Lipid 1 is an ionizable amino lipid used for the generation of Lipid nanoparticles (LNPs).
DC65332 Lipid 6

Customized Consultation X

Your information is safe with us. * Required Fields.

Your name
Company
Email
Procuct Name
Cat. No.
Remark
Verification code
Please fill out the characters in the picture
X